Fas-Fas Ligand Interplay in the Periphery of Salivary Gland Carcinomas as a New Checkpoint Predictor for Disease Severity and Immunotherapy Response
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
364218
Grantová Agentura, Univerzita Karlova
PRIMUS/MED/12
Univerzita Karlova v Praze
Progres Q28 [First Faculty of Medicine]
Univerzita Karlova v Praze
AZV 16-28135A
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33917866
PubMed Central
PMC8068215
DOI
10.3390/biomedicines9040402
PII: biomedicines9040402
Knihovny.cz E-zdroje
- Klíčová slova
- Fas, FasL, salivary gland carcinoma, tumor center, tumor periphery,
- Publikační typ
- časopisecké články MeSH
Salivary gland carcinomas (SGCs) are extremely morphologically heterogeneous, and treatment options for this disease are limited. Immunotherapy with immune checkpoint inhibitors (ICIs) represents a revolutionary treatment approach. However, SGCs remain largely resistant to this therapy. An increasing body of evidence suggests that resistance to ICI therapy is modulated by the Fas (CD95)-Fas ligand (FasL, CD178) interplay between tumor cells and immune cells. In this study, we examined the Fas-FasL interplay between tumor cells and tumor-infiltrating immune cells (TIICs) in the center and periphery of SGCs from 62 patients. We found that the Fas-expressing tumor cells accumulated in the center of SGC tumors with increasing tumor stage. Furthermore, this accumulation occurred regardless of the presence of TIICs expressing high levels of FasL. On the contrary, a loss of Fas-expressing TIICs with increasing tumor stage was found in the tumor periphery, whereas FasL expression in tumor cells in the tumor periphery correlated with tumor stage. These data suggest that SGC cells are resistant to FasL-induced apoptosis by TIICs but could utilize FasL to eliminate these cells in high-stage tumors to provide resistance to immunotherapy.
Zobrazit více v PubMed
Lee R.J., Tan A.P., Tong E.L., Satyadev N., Christensen R.E. Epidemiology, prognostic factors, and treatment of malignant submandibular gland tumors: A population-based cohort analysis. JAMA Otolaryngol. 2015;141:905–912. doi: 10.1001/jamaoto.2015.1745. PubMed DOI
Galdirs T.M., Kappler M., Reich W., Eckert A.W. Current aspects of salivary gland tumors—A systematic review of the literature. GMS Interdiscip. Plast. Reconstr. Surg. 2019;8:12. doi: 10.3205/iprs000138. PubMed DOI PMC
Ettl T., Schwarz-Furlan S., Gosau M., Reichert T.E. Salivary gland carcinomas. Oral Maxillofac. Surg. 2012;16:267–283. doi: 10.1007/s10006-012-0350-9. PubMed DOI
Gillespie M.B., Albergotti W.G., Eisele D.W. Recurrent salivary gland cancer. Curr. Treat. Options Oncol. 2012;13:58–70. doi: 10.1007/s11864-011-0174-0. PubMed DOI
Cohen R.B., Delord J.P., Doi T., Piha-Paul S.A., Liu S.V., Gilbert J., Algazi A.P., Damian S., Hong R.L., Le Tourneau C., et al. Pembrolizumab for the treatment of advanced salivary gland carcinoma: Findings of the phase 1b KEYNOTE-028 study. Am. J. Clin. Oncol. 2018;41:1083–1088. doi: 10.1097/COC.0000000000000429. PubMed DOI PMC
Voelker R. Immunotherapy is now first-line therapy for some colorectal cancers. JAMA. 2020;324:433. doi: 10.1001/jama.2020.13299. PubMed DOI
Peters S., Reck M., Smit E.F., Mok T., Hellmann M.D. How to make the best use of immunotherapy as first-line treatment of advanced/metastatic non-small-cell lung cancer. Ann. Oncol. 2019;30:884–896. doi: 10.1093/annonc/mdz109. PubMed DOI
Labriola M.K., Batich K.A., Zhu J., McNamara M.A., Harrison M.R., Armstrong A.J., George D.J., Zhang T. Immunotherapy is changing first-line treatment of metastatic renal-cell carcinoma. Clin. Genitourin. Cancer. 2019;17:e513–e521. doi: 10.1016/j.clgc.2019.01.017. PubMed DOI PMC
Ventola C.L. Cancer immunotherapy, part 3: Challenges and future trends. Peer Rev. J. Formul. Manag. 2017;42:514–521. PubMed PMC
Sharma P., Hu-Lieskovan S., Wargo J.A., Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–723. doi: 10.1016/j.cell.2017.01.017. PubMed DOI PMC
Kawakami Y., Ohta S., Sayem M.A., Tsukamoto N., Yaguchi T. Immune-resistant mechanisms in cancer immunotherapy. Int. J. Clin. Oncol. 2020;25:810–817. doi: 10.1007/s10147-019-01611-x. PubMed DOI
Barrueto L., Caminero F., Cash L., Makris C., Lamichhane P., Deshmukh R.R. Resistance to checkpoint inhibition in cancer immunotherapy. Transl. Oncol. 2020;13:100738. doi: 10.1016/j.tranon.2019.12.010. PubMed DOI PMC
Jiang Y., Chen M., Nie H., Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Hum. Vaccines Immunother. 2019;15:1111–1122. doi: 10.1080/21645515.2019.1571892. PubMed DOI PMC
Seidel J.A., Otsuka A., Kabashima K. Anti-PD-1 and Anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front. Oncol. 2018;8:86. doi: 10.3389/fonc.2018.00086. PubMed DOI PMC
Zhu J., Powis de Tenbossche C.G., Cane S., Colau D., van Baren N., Lurquin C., Schmitt-Verhulst A.M., Liljestrom P., Uyttenhove C., Van den Eynde B.J. Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat. Commun. 2017;8:1404. doi: 10.1038/s41467-017-00784-1. PubMed DOI PMC
Gibson J.T., Orlandella R.M., Turbitt W.J., Behring M., Manne U., Sorge R.E., Norian L.A. Obesity-associated myeloid-derived suppressor cells promote apoptosis of tumor-infiltrating CD8 T cells and immunotherapy resistance in breast cancer. Front. Immunol. 2020;11:590794. doi: 10.3389/fimmu.2020.590794. PubMed DOI PMC
Sugihara E., Hashimoto N., Osuka S., Shimizu T., Ueno S., Okazaki S., Yaguchi T., Kawakami Y., Kosaki K., Sato T.A., et al. The inhibitor of apoptosis protein livin confers resistance to Fas-mediated immune cytotoxicity in refractory lymphoma. Cancer Res. 2020;80:4439–4450. doi: 10.1158/0008-5472.CAN-19-3993. PubMed DOI
Peter M.E., Hadji A., Murmann A.E., Brockway S., Putzbach W., Pattanayak A., Ceppi P. The role of CD95 and CD95 ligand in cancer. Cell Death Differ. 2015;22:549–559. doi: 10.1038/cdd.2015.3. PubMed DOI PMC
Huang S.H., O’Sullivan B. Overview of the 8th edition TNM classification for head and neck cancer. Curr. Treat. Options Oncol. 2017;18:40. doi: 10.1007/s11864-017-0484-y. PubMed DOI
O’Kane G., Lynch M., Hooper S., Aird J., Muldoon C., Mulligan N., Loscher C., Gallagher D.J. Zonal differences in PD-1 expression in centre of tumour versus periphery in microsatellite stable and unstable colorectal cancer. J. Clin. Oncol. 2015;33:3574. doi: 10.1200/jco.2015.33.15_suppl.3574. DOI
Ferrata M., Schad A., Zimmer S., Musholt T.J., Bahr K., Kuenzel J., Becker S., Springer E., Roth W., Weber M.M., et al. PD-L1 Expression and immune cell infiltration in Gastroenteropancreatic (GEP) and Non-GEP neuroendocrine neoplasms with high proliferative activity. Front. Oncol. 2019;9:343. doi: 10.3389/fonc.2019.00343. PubMed DOI PMC
Phillips T., Simmons P., Inzunza H.D., Cogswell J., Novotny J., Jr., Taylor C., Zhang X. Development of an automated PD-L1 immunohistochemistry (IHC) assay for non-small cell lung cancer. Appl. Immunohistochem. Mol. Morphol. 2015;23:541–549. doi: 10.1097/PAI.0000000000000256. PubMed DOI PMC
Igarashi T., Teramoto K., Ishida M., Hanaoka J., Daigo Y. Scoring of PD-L1 expression intensity on pulmonary adenocarcinomas and the correlations with clinicopathological factors. ESMO Open. 2016;1:e000083. doi: 10.1136/esmoopen-2016-000083. PubMed DOI PMC
Cedres S., Ponce-Aix S., Zugazagoitia J., Sansano I., Enguita A., Navarro-Mendivil A., Martinez-Marti A., Martinez P., Felip E. Analysis of expression of programmed cell death 1 ligand 1 (PD-L1) in malignant pleural mesothelioma (MPM) PLoS ONE. 2015;10:e0121071. doi: 10.1371/journal.pone.0121071. PubMed DOI PMC
Xiao W., Ibrahim M.L., Redd P.S., Klement J.D., Lu C., Yang D., Savage N.M., Liu K. Loss of Fas expression and function is coupled with colon cancer resistance to immune checkpoint inhibitor immunotherapy. Mol Cancer Res. 2019;17:420–430. doi: 10.1158/1541-7786.MCR-18-0455. PubMed DOI PMC
Zietz C., Rumpler U., Sturzl M., Lohrs U. Inverse relation of Fas-ligand and tumor-infiltrating lymphocytes in angiosarcoma: Indications of apoptotic tumor counterattack. Am. J. Pathol. 2001;159:963–970. doi: 10.1016/S0002-9440(10)61772-5. PubMed DOI PMC
Zhu J., Petit P.F., Van den Eynde B.J. Apoptosis of tumor-infiltrating T lymphocytes: A new immune checkpoint mechanism. Cancer Immunol. Immunother. 2019;68:835–847. doi: 10.1007/s00262-018-2269-y. PubMed DOI PMC
Blok E.J., van den Bulk J., Dekker-Ensink N.G., Derr R., Kanters C., Bastiaannet E., Kroep J.R., van de Velde C.J., Kuppen P.J. Combined evaluation of the FAS cell surface death receptor and CD8+ tumor infiltrating lymphocytes as a prognostic biomarker in breast cancer. Oncotarget. 2017;8:15610–15620. doi: 10.18632/oncotarget.14779. PubMed DOI PMC
Siegel R.M., Chan F.K., Chun H.J., Lenardo M.J. The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity. Nat. Immunol. 2000;1:469–474. doi: 10.1038/82712. PubMed DOI
Villa-Morales M., Cobos M.A., Gonzalez-Gugel E., Alvarez-Iglesias V., Martinez B., Piris M.A., Carracedo A., Benitez J., Fernandez-Piqueras J. FAS system deregulation in T-cell lymphoblastic lymphoma. Cell Death Dis. 2014;5:e1110. doi: 10.1038/cddis.2014.83. PubMed DOI PMC
Sordo-Bahamonde C., Lorenzo-Herrero S., Payer A.R., Gonzalez S., Lopez-Soto A. Mechanisms of apoptosis resistance to NK cell-mediated cytotoxicity in cancer. Int. J. Mol. Sci. 2020;21:3726. doi: 10.3390/ijms21103726. PubMed DOI PMC
Tauzin S., Debure L., Moreau J.F., Legembre P. CD95-mediated cell signaling in cancer: Mutations and post-translational modulations. Cell. Mol. Life Sci. 2012;69:1261–1277. doi: 10.1007/s00018-011-0866-4. PubMed DOI PMC
Bennett M.W., O’Connell J., O’Sullivan G.C., Brady C., Roche D., Collins J.K., Shanahan F. The Fas counterattack in vivo: Apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma. J. Immunol. 1998;160:5669–5675. PubMed
Yamada A., Arakaki R., Saito M., Kudo Y., Ishimaru N. Dual role of Fas/FasL-mediated signal in peripheral immune tolerance. Front. Immunol. 2017;8:403. doi: 10.3389/fimmu.2017.00403. PubMed DOI PMC
Waring P., Mullbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol. Cell Biol. 1999;77:312–317. doi: 10.1046/j.1440-1711.1999.00837.x. PubMed DOI
Nagata S. Fas-induced apoptosis, and diseases caused by its abnormality. Genes Cells. 1996;1:873–879. doi: 10.1046/j.1365-2443.1996.d01-214.x. PubMed DOI
Linxweiler M., Kuo F., Katabi N., Lee M., Nadeem Z., Dalin M.G., Makarov V., Chowell D., Dogan S., Ganly I., et al. The immune microenvironment and neoantigen landscape of aggressive salivary gland carcinomas differ by subtype. Clin. Cancer Res. 2020;26:2859–2870. doi: 10.1158/1078-0432.CCR-19-3758. PubMed DOI PMC
Tschumi B.O., Dumauthioz N., Marti B., Zhang L., Lanitis E., Irving M., Schneider P., Mach J.P., Coukos G., Romero P., et al. CART cells are prone to Fas- and DR5-mediated cell death. J. Immunother. Cancer. 2018;6:71. doi: 10.1186/s40425-018-0385-z. PubMed DOI PMC
Kuenzi P., Schneider P., Dobbelaere D.A. Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis. J. Immunol. 2003;171:1224–1231. doi: 10.4049/jimmunol.171.3.1224. PubMed DOI
Yasukawa M., Ohminami H., Arai J., Kasahara Y., Ishida Y., Fujita S. Granule exocytosis, and not the Fas/Fas ligand system, is the main pathway of cytotoxicity mediated by alloantigen-specific CD4(+) as well as CD8(+) cytotoxic T lymphocytes in humans. Blood. 2000;95:2352–2355. doi: 10.1182/blood.V95.7.2352.007k40_2352_2355. PubMed DOI