Leaves and Fruits Preparations of Pistacia lentiscus L.: A Review on the Ethnopharmacological Uses and Implications in Inflammation and Infection
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33921406
PubMed Central
PMC8069618
DOI
10.3390/antibiotics10040425
PII: antibiotics10040425
Knihovny.cz E-zdroje
- Klíčová slova
- Mediterranean plants, essential oils, ethanol extracts, natural anti-inflammatory, natural antimicrobials, pharmaceutical plants, polyphenols, terpenoids, water extracts,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
There is an increasing interest in revisiting plants for drug discovery, proving scientifically their role as remedies. The aim of this review was to give an overview of the ethnopharmacological uses of Pistacia lentiscus L. (PlL) leaves and fruits, expanding the search for the scientific discovery of their chemistry, anti-inflammatory, antioxidative and antimicrobial activities. PlL is a wild-growing shrub rich in terpenoids and polyphenols, the oil and extracts of which have been widely used against inflammation and infections, and as wound healing agents. The more recurrent components in PlL essential oil (EO) are represented by α-pinene, terpinene, caryophyllene, limonene and myrcene, with high variability in concentration depending on the Mediterranean country. The anti-inflammatory activity of the oil mainly occurs due to the inhibition of pro-inflammatory cytokines and the arachidonic acid cascade. Interestingly, the capacity against COX-2 and LOX indicates PlL EO as a dual inhibitory compound. The high content of polyphenols enriching the extracts provide explanations for the known biological properties of the plant. The protective effect against reactive oxygen species is of wide interest. In particular, their anthocyanins content greatly clarifies their antioxidative capacity. Further, the antimicrobial activity of PlL oil and extracts includes the inhibition of Staphylococcus aureus, Escherichia coli, periodontal bacteria and Candida spp. In conclusion, the relevant scientific properties indicate PlL as a nutraceutical and also as a therapeutic agent against a wide range of diseases based on inflammation and infections.
Dental Unite Azienda Ospedaliero Universitaria di Sassari 07100 Sassari Italy
Department of Biomedical Sciences University of Sassari Viale San Pietro 43 C 07100 Sassari Italy
Department of Pharmaceutical Sciences University of Perugia Via Fabretti 48 06123 Perugia Italy
Institute of Experimental Botany Czech Academy of Sciences Rozvojová 263 16502 Prague Czech Republic
Zobrazit více v PubMed
Thabit A.K., Crandon J.L., Nicolau D.P. Antimicrobial resistance: Impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin. Pharmacother. 2015;16:159–177. doi: 10.1517/14656566.2015.993381. PubMed DOI
Fiala C., Pasic M.D. Aspirin: Bitter pill or miracle drug? Clin. Biochem. 2020;85:1–4. doi: 10.1016/j.clinbiochem.2020.07.003. PubMed DOI
Zhu W., Wang Z., Sun Y., Yang B., Wang Q., Kuang H. Traditional uses, phytochemistry and pharmacology of genus Syringa: A comprehensive review. J. Ethnopharmacol. 2021;266:113465. doi: 10.1016/j.jep.2020.113465. PubMed DOI
El Omari N., Ezzahrae Guaouguaou F., El Menyiy N., Benali T., Aanniz T., Chamkhi I., Balahbib A., Taha D., Shariati M.A., Zengin G., et al. Phytochemical and biological activities of Pinus halepensis mill., and their ethnomedicinal use. J. Ethnopharmacol. 2021;268:113661. doi: 10.1016/j.jep.2020.113661. PubMed DOI
Newman D.J., Cragg G.M. Natural Products As Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012;75:311–335. doi: 10.1021/np200906s. PubMed DOI PMC
De Cássia da Silveira e Sá R., Andrade L.N., de Sousa D.P. A review on anti-inflammatory activity of monoterpenes. Molecules. 2013;18:1227–1254. doi: 10.3390/molecules18011227. PubMed DOI PMC
Gonçalves E.C.D., Baldasso G.M., Bicca M.A., Paes R.S., Capasso R., Dutra R.C. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules. 2020;25:1567. doi: 10.3390/molecules25071567. PubMed DOI PMC
McNaught A.D., Wilkinson A. IUPAC Compendium of Chemical Terminology. 2nd ed. Blackwell Science Publications; Oxford, UK: 1997.
Russo E.B. Cannabis Pharmacology: The Usual Suspects and a Few Promising Leads. Adv. Pharmacol. 2017;80:67–134. doi: 10.1016/bs.apha.2017.03.004. PubMed DOI
Kim T., Song B., Cho K.S., Lee I.-S. Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int. J. Mol. Sci. 2020;21:2187. doi: 10.3390/ijms21062187. PubMed DOI PMC
Basu A., Masek E., Ebersole J.L. Dietary Polyphenols and Periodontitis-A Mini-Review of Literature. Molecules. 2018;23:1786. doi: 10.3390/molecules23071786. PubMed DOI PMC
Quartu M., Serra M.P., Boi M., Pillolla G., Melis T., Poddighe L., Del Fiacco M., Falconieri D., Carta G., Murru E., et al. Effect of acute administration of Pistacia lentiscus L. essential oil on rat cerebral cortex following transient bilateral common carotid artery occlusion. Lipids Health Dis. 2012;11:8. doi: 10.1186/1476-511X-11-8. PubMed DOI PMC
Pachi V.K., Mikropoulou E.V., Gkiouvetidis P., Siafakas K., Argyropoulou A., Angelis A., Mitakou S., Halabalaki M. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review. J. Ethnopharmacol. 2020;254:112485. doi: 10.1016/j.jep.2019.112485. PubMed DOI
Papada E., Kaliora A.C. Antioxidant and Anti-Inflammatory Properties of Mastiha: A Review of Preclinical and Clinical Studies. Antioxidants. 2019;8:208. doi: 10.3390/antiox8070208. PubMed DOI PMC
Piccolella S., Nocera P., Carillo P., Woodrow P., Greco V., Manti L., Fiorentino A., Pacifico S. An Apolar Pistacia Lentiscus L. Leaf Extract: GC-MS Metabolic Profiling and Evaluation of Cytotoxicity and Apoptosis Inducing Effects on SH-SY5Y and SK-N-BE(2)C Cell Lines. Food Chem. Toxicol. 2016;95:64–74. doi: 10.1016/j.fct.2016.06.028. PubMed DOI
Zohary M. A Mono-Graphical Study of the Genus Pistacia. Palest. J. Bot. Jerus. Ser. 1952;5:187–228.
Rauf A., Patel S., Uddin G., Siddiqui B.S., Ahmad B., Muhammad N., Mabkhot Y.N., Hadda T.B. Phytochemical, ethnomedicinal uses and pharmacological profile of genus Pistacia. Biomed. Pharmacother. 2017;86:393–404. doi: 10.1016/j.biopha.2016.12.017. PubMed DOI
Treitler J.T., Drissen T., Stadtmann R., Zerbe S., Mantilla-Contreras J. Complementing endozoochorous seed dispersal patterns by donkeys and goats in a semi-natural island ecosystem. BMC Ecol. 2017;17:42. doi: 10.1186/s12898-017-0148-6. PubMed DOI PMC
Barra A., Coroneo V., Dessi S., Cabras P., Angioni A. Characterization of the volatile constituents in the essential oil of Pistacia lentiscus L. from different origins and its antifungal and antioxidant activity. J. Agric. Food Chem. 2007;55:7093–7098. doi: 10.1021/jf071129w. PubMed DOI
Rostas M., Maag D., Ikegami M., Inbar M. Gall volatiles defend aphids against a browsing mammal. BMC Evol. Biol. 2013;13:193. doi: 10.1186/1471-2148-13-193. PubMed DOI PMC
Inbar M., Wink M., Wool D. The evolution of host plant manipulation by insects: Molecular and ecological evidence from gall-forming aphids on Pistacia. Mol. Phylogenet. Evol. 2004;32:504–511. doi: 10.1016/j.ympev.2004.01.006. PubMed DOI
Rand K., Bar E., Ben-Ari M., Lewinsohn E., Inbar M. The mono—and sesquiterpene content of aphid-induced galls on Pistacia palaestina is not a simple reflection of their composition in intact leaves. J. Chem. Ecol. 2014;40:632–642. doi: 10.1007/s10886-014-0462-9. PubMed DOI
Elgubbi H., Alfageih L., Zorab A., Elmeheshi F. Pistacia lentiscus tree and its role in riddance of some environmental polluters. EC Nutr. 2017;10:8–14.
Cabiddu A., Delgadillo-Puga C., Decandia M., Molle A.G. Extensive ruminant production systems and milk quality with emphasis on unsaturated fatty acids, volatile compounds, antioxidant protection degree and phenol content. Animals. 2019;9:771. doi: 10.3390/ani9100771. PubMed DOI PMC
Ballero M., Poli F., Sacchetti G., Loi M.C. Ethnobotanical research in the territory of Fluminimaggiore (south-western Sardinia) Fitoterapia. 2001;72:788–801. doi: 10.1016/S0367-326X(01)00334-3. PubMed DOI
Palmese M.T., Uncini Manganelli R.E., Tomei P.E. An ethno-pharmacobotanical survey in the Sarrabus district (south-east Sardinia) Fitoterapia. 2001;72:619–643. doi: 10.1016/S0367-326X(01)00288-X. PubMed DOI
Leporatti M.L., Ghedira K. Comparative analysis of medicinal plants used in traditional medicine in Italy and Tunisia. J. Ethnobiol. Ethnomed. 2009;5:31. doi: 10.1186/1746-4269-5-31. PubMed DOI PMC
Leonti M., Staub P.O., Cabras S., Castellanos M.E., Casu L. From cumulative cultural transmission to evidence-based medicine: Evolution of medicinal plant knowledge in Southern Italy. Front. Pharmacol. 2015;6:207. doi: 10.3389/fphar.2015.00207. PubMed DOI PMC
Maxia A., Lancioni M.C., Balia A.N., Alborghetti R., Pieroni A., Loi M.C. Medical ethnobotany of the Tabarkins, a Northern Italian (Ligurian) minority in south-western Sardinia. Genet. Resour. Crop. Evol. 2008;55:911–924. doi: 10.1007/s10722-007-9296-4. DOI
Di Rosa A. Erbe e Piante Medicinali in Sardegna. 3rd ed. Carlo Delfino Ed.; Sassari, Italy: 2018.
Loi M.C., Frajus L., Maxia A. Le piante utilizzate nella medicina popolare nel territorio Di Gesturi (Sardegna Centro-Meridionale) Atti. Soc. Tosc. Sci. Flat. Mem. 2002;109:167–176.
Scherrer A.M., Motti R., Weckerle C.S. Traditional plant use in the areas of Monte Vesole and Ascea, Cilento National Park (Campania, Southern Italy) J. Ethnopharmacol. 2005;97:129–143. doi: 10.1016/j.jep.2004.11.002. PubMed DOI
Benitez G., Gonzalez-Tejero M.R., Molero-Mesa J. Knowledge of ethnoveterinary medicine in the Province of Granada, Andalusia, Spain. J. Ethnopharmacol. 2012;139:429–439. doi: 10.1016/j.jep.2011.11.029. PubMed DOI
Gras A., Serrasolses G., Valles J., Garnatje T. Traditional knowledge in semi-rural close to industrial areas: Ethnobotanical studies in western Girones (Catalonia, Iberian Peninsula) J. Ethnobiol. Ethnomed. 2019;15:19. doi: 10.1186/s13002-019-0295-2. PubMed DOI PMC
Trabelsi H., Cherif O.A., Sakouhi F., Villeneuve P., Renaud J., Barouh N., Boukhchina S., Mayer P. Total lipid content, fatty acids and 4-desmethylsterols accumulation in developing fruit of Pistacia lentiscus L. growing wild in Tunisia. Food Chem. 2012;131:434–440. doi: 10.1016/j.foodchem.2011.08.083. DOI
Saiah H., Allem R., Kebir F.Z.R. Antioxidant and antibacterial activities of six Algerian medicinal plants. Int. J. Pharm. Pharm. Sci. 2016;8:367–374.
Jamila F., Mostafa E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J. Ethnopharmacol. 2014;154:76–87. doi: 10.1016/j.jep.2014.03.016. PubMed DOI
Janakat S., Al-Merie H. Evaluation of hepatoprotective effect of Pistacia lentiscus, Phillyrea latifolia and Nicotiana glauca. J. Ethnopharmacol. 2002;83:135–138. doi: 10.1016/S0378-8741(02)00241-6. PubMed DOI
Lev E., Amar Z. Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan. J. Ethnopharmacol. 2002;82:131–145. doi: 10.1016/S0378-8741(02)00182-4. PubMed DOI
Lev E. Ethno-diversity within current ethno-pharmacology as part of Israeli traditional medicine—A review. J. Ethnobiol. Ethnomed. 2006;2:4. doi: 10.1186/1746-4269-2-4. PubMed DOI PMC
Rahimi R., Mozaffari S., Abdollahi M. On the use of herbal medicines in management of inflammatory bowel diseases: A systematic review of animal and human studies. Dig. Sci. 2009;54:471–480. doi: 10.1007/s10620-008-0368-x. PubMed DOI
Farzaei M.H., Shams-Ardekani M.R., Abbasabadi Z., Rahimi R. Scientific evaluation of edible fruits and spices used for the treatment of peptic ulcer in traditional Iranian medicine. ISRN Gastroenterol. 2013;2013:136932. doi: 10.1155/2013/136932. PubMed DOI PMC
Giner-Larza E.M., Manez S., Recio M.C., Giner R.M., Prieto J.M., Cerda-Nicolas M., Rios J.L. Oleanonic acid, a 3-oxotriterpene from Pistacia, inhibits leukotriene synthesis and has anti-inflammatory activity. Eur. J. Pharmacol. 2001;428:137–143. doi: 10.1016/S0014-2999(01)01290-0. PubMed DOI
Missoun F., Bouabedelli F., Benhamimed E., Baghdad A., Djebli N. Phytochemical study and antibacterial activity of different extracts of Pistacia lentiscus L collected from Dahra Region West of Algeria. J. Fundam. Appl. Sci. 2017;9:669–684. doi: 10.4314/jfas.v9i2.4. DOI
Piluzza G., Virdis S., Serralutzu F., Bullitta S. Uses of plants, animal and mineral substances in Mediterranean ethno-veterinary practices for the care of small ruminants. J. Ethnopharmacol. 2015;168:87–99. doi: 10.1016/j.jep.2015.03.056. PubMed DOI
Tassou C.C., Chorianopoulos N.G., Skandamis P.N., Nychas G.J.E. Herbs, spices and their active components as natural antimicrobials in foods. In: Peter K.V., editor. Handbook of Herbs and Spices. Volume 2. Woodhead Publishing; Cambridge, UK: 2012. pp. 17–50.
Farmacopea Ufficiale della Repubblica Italiana. Istituto Poligrafico e Zecca dello Stato; Roma, Italy: 2008.
Franz C., Novak J. Sources of essential oils. In: Baser K.H.C., Buchbauer G., editors. Handbook of Essential Oils: Science, Technology, and Applications. CPR Press Taylor & Francis Group; Boca Raton, FL, USA: 2010. pp. 39–82.
Milia E., Usai M., Szotakova B., Elstnerova M., Kralova V., D’Hallewin G., Spissu Y., Barberis A., Marchetti M., Bortone A., et al. The Pharmaceutical Ability of Pistacia Lentiscus L. Leaves Essential Oil Against Periodontal Bacteria and Candida Sp. and Its Anti-Inflammatory Potential. Antibiotics. 2020;9:281. doi: 10.3390/antibiotics9060281. PubMed DOI PMC
Russo E.B. Taming THC: Potential Cannabis Synergy and Phytocannabinoid-Terpenoid Entourage Effects. Br. J. Pharmacol. 2011;163:1344–1364. doi: 10.1111/j.1476-5381.2011.01238.x. PubMed DOI PMC
Gardeli C., Vassiliki P., Athanasios M., Kibouris T., Komaitis M. Essential Oil Composition of Pistacia Lentiscus L. and Myrtus Communis L.: Evaluation of Antioxidant Capacity of Methanolic Extracts. Food Chem. 2008;107:1120–1130. doi: 10.1016/j.foodchem.2007.09.036. DOI
De Pooter H.L., Schamp N.M., Aboutabl E.A., Tohamy S.F., Doss S.L. Essential oils from the leaves of three Pistacia species grown in Egypt. Flavour Fragr. J. 1991;6:229–232. doi: 10.1002/ffj.2730060313. DOI
Boelens M.H., Jimenez R. Chemical composition of the essential oils from the gum and from various parts of Pistacia lentiscus l. (mastic gum tree) Flavour Fragr. J. 1991;6:271–275. doi: 10.1002/ffj.2730060406. DOI
Zrira S., Elamrani A., Benjilali B. Chemical composition of the essential oil of Pistacia lentiscus L. from Morocco—A seasonal variation. Flavour Fragr. J. 2003;18:475–480. doi: 10.1002/ffj.1221. DOI
Ben Douissa F., Hayder N., Chekir-Ghedira L., Hammami M., Ghedira K., Mariotte A.M., Dijoux-Franca M.G. New study of the essential oil from leaves of Pistacia lentiscus L. (Anacardiaceae) from Tunisia. Flavour Fragr. J. 2005;20:410–414. doi: 10.1002/ffj.1445. DOI
Bozorgi M., Memariani Z., Mobli M., Salehi Surmaghi M.H., Shams-Ardekani M.R., Rahimi R. Five Pistacia species (P. vera, P. atlantica, P. terebinthus, P. khinjuk, and P. lentiscus): A Review of Their Traditional Uses, Phytochemistry, and Pharmacology. Sci. World J. 2013;2013:219815. doi: 10.1155/2013/219815. PubMed DOI PMC
Vogelman T.C. Plant tissue optics. Rev. Plant Physiol. Plant Mol. Biol. 1993;44:231–251. doi: 10.1146/annurev.pp.44.060193.001311. DOI
Orru G., Demontis C., Mameli A., Tuveri E., Coni P., Pichiri G., Coghe F., Rosa A., Rossi P., D’Hallewin G. The Selective Interaction of Pistacia Lentiscus Oil vs. Human Streptococci, an Old Functional Food Revisited with New Tools. Front. Microbiol. 2017;8:2067. doi: 10.3389/fmicb.2017.02067. PubMed DOI PMC
Stagos D. Antioxidant Activity of Polyphenolic Plant Extracts. Antioxidants. 2019;9:19. doi: 10.3390/antiox9010019. PubMed DOI PMC
Romani A., Pinelli P., Galardi C., Mulinacci N., Tattini M. Identification and quantification of galloyl derivatives, flavonoid glycosides and anthocyanins in leaves of Pistacia lentiscus L. Phytochem. Anal. 2002;13:79–86. doi: 10.1002/pca.627. PubMed DOI
Rodriguez-Perez C., Quirantes-Pine R., Amessis-Ouchemoukh N., Madani K., Segura-Carretero A., Fernandez-Gutierrez A. A metabolite-profiling approach allows the identification of new compounds from Pistacia lentiscus leaves. J. Pharm. Biomed. Anal. 2013;77:167–174. doi: 10.1016/j.jpba.2013.01.026. PubMed DOI
Magiatis P., Melliou E., Skaltsounis A.L., Chinou I.B., Mitaku S. Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia. Planta Med. 1999;65:749–752. doi: 10.1055/s-2006-960856. PubMed DOI
Duru M.E., Cakir A., Kordali S., Zengin H., Harmandar M., Izumi S., Hirata T. Chemical composition and antifungal properties of essential oils of three Pistacia species. Fitoterapia. 2003;74:170–176. doi: 10.1016/S0367-326X(02)00318-0. PubMed DOI
Dob T., Dahmane D., Chelghoum C. Chemical composition of the essential oils of Pistacia lentiscus L. from Algeria. J. Essent. Oil Res. 2006;18:335–338. doi: 10.1080/10412905.2006.9699105. DOI
Said S.A., Fernandez C., Greff S., Torre F., Derridj A., Gauquelin T., Mevy J.P. Inter-Population Variability of Terpenoid Composition in Leaves of Pistacia lentiscus L. from Algeria: A Chemoecological Approach. Molecules. 2011;16:2646–2657. doi: 10.3390/molecules16032646. PubMed DOI PMC
Aouinti F., Imelouane B., Tahri M., Wathelet J.P., Amhamdi H., Elbachiri A. New study of the essential oil, mineral composition and antibacterial activity of Pistacia lentiscus L. from Eastern Morocco. Res. Chem. Intermed. 2014;40:2873–2886. doi: 10.1007/s11164-013-1134-z. DOI
Bampouli A., Kyriakopoulou K., Papaefstathiou G., Louli V., Krokida M., Magoulas K. Comparison of different extraction methods of Pistacia lentiscus var. chia leaves: Yield, antioxidant activity and essential oil chemical composition. J. Appl. Res. Med. Aromat. Plants. 2014;1:81–91. doi: 10.1016/j.jarmap.2014.07.001. DOI
Mezni F., Aouadhi C., Khouja M.L., Khaldi A., Maaroufi A. In vitro antimicrobial activity of Pistacia lentiscus L. edible oil and phenolic extract. Nat. Prod. Res. 2015;29:565–570. doi: 10.1080/14786419.2014.952232. PubMed DOI
Aissi O., Boussaid M., Messaoud C. Essential oil composition in natural populations of Pistacia lentiscus L. from Tunisia: Effect of ecological factors and incidence on antioxidant and antiacetylcholinesterase activities. Ind. Crop. Prod. 2016;91:56–65. doi: 10.1016/j.indcrop.2016.06.025. DOI
Ben Khedir S., Mzid M., Bardaa S., Moalla D., Sahnoun Z., Rebai T. In vivo evaluation of the anti-inflammatory effect of Pistacia lentiscus fruit oil and its effects on oxidative stress. Evid. Based Complement. Altern. Med. 2016;2016:6108203. doi: 10.1155/2016/6108203. PubMed DOI PMC
Buriani A., Fortinguerra S., Sorrenti V., Dall’Acqua S., Innocenti G., Montopoli M., Gabbia D., Carrara M. Human Adenocarcinoma Cell Line Sensitivity to Essential Oil Phytocomplexes from Pistacia Species: A Multivariate Approach. Molecules. 2017;22:1336. doi: 10.3390/molecules22081336. PubMed DOI PMC
Marengo A., Piras A., Falconieri D., Porcedda S., Caboni P., Cortis P., Foddis C., Loi C., Goncalves M.J., Salgueiro L., et al. Chemical and biomolecular analyses to discriminate three taxa of Pistacia genus from Sardinia Island (Italy) and their antifungal activity. Nat. Prod. Res. 2018;32:2766–2774. doi: 10.1080/14786419.2017.1378211. PubMed DOI
Ammari M., Othman H., Hajri A., Sakly M., Abdelmelek H. Pistacia lentiscus oil attenuates memory dysfunction and decreases levels of biomarkers of oxidative stress induced by lipopolysaccharide in rats. Brain Res. Bull. 2018;140:140–147. doi: 10.1016/j.brainresbull.2018.04.014. PubMed DOI
Yosr Z., Imen B.H.Y., Rym J., Chokri M., Mohamed B. Sex-related differences in essential oil composition, phenol contents and antioxidant activity of aerial parts in Pistacia lentiscus L. during seasons. Ind. Crop. Prod. 2018;121:151–159. doi: 10.1016/j.indcrop.2018.04.067. DOI
Bouyahya A., Assemian I.C.C., Mouzount H., Bourais I., Et-Touys A., Fellah H., Benjouad A., Dakka N., Bakri Y. Could volatile compounds from leaves and fruits of Pistacia lentiscus constitute a novel source of anticancer, antioxidant, antiparasitic and antibacterial drugs? Ind. Crop. Prod. 2019;128:62–69. doi: 10.1016/j.indcrop.2018.11.001. DOI
Longo L., Scardino A., Vasapollo G. Identification and quantification of anthocyanins in the berries of Pistacia lentiscus L., Phillyrea latifolia L. and Rubia peregrina L. Innov. Food Sci. Emerg. Technol. 2007;8:360–364. doi: 10.1016/j.ifset.2007.03.010. DOI
Pacifico S., Piccolella S., Marciano S., Galasso S., Nocera P., Piscopo V., Fiorentino A., Monaco P. LC-MS/MS Profiling of a Mastic Leaf Phenol Enriched Extract and Its Effects on H2O2 and A beta(25-35) Oxidative Injury in SK-B-NE(C)-2 Cells. J. Agric. Food Chem. 2014;62:11957–11966. doi: 10.1021/jf504544x. PubMed DOI
Mezni F., Slama A., Ksouri R., Hamdaoui G., Khouja M.L., Khaldi A. Phenolic profile and effect of growing area on Pistacia lentiscus seed oil. Food Chem. 2018;257:206–210. doi: 10.1016/j.foodchem.2018.03.019. PubMed DOI
Gori A., Nascimento L.B., Ferrini F., Centritto M., Brunetti C. Seasonal and Diurnal Variation in Leaf Phenolics of Three Medicinal Mediterranean Wild Species: What Is the Best Harvesting Moment to Obtain the Richest and the Most Antioxidant Extracts? Molecules. 2020;25:956. doi: 10.3390/molecules25040956. PubMed DOI PMC
El Bishbishy M.H., Gad H.A., Aborehab N.M. Chemometric discrimination of three Pistacia species via their metabolic profiling and their possible in vitro effects on memory functions. J. Pharm. Biomed. Anal. 2020;177:112840. doi: 10.1016/j.jpba.2019.112840. PubMed DOI
Zeng Y., Song J.-X., Shen X.-C. Herbal remedies supply a novel prospect for the treatment of atherosclerosis: A review of current mechanism studies. Phytother. Res. PTR. 2012;26:159–167. doi: 10.1002/ptr.3587. PubMed DOI
Jiang F., Chen W., Yi K.J., Wu Z.Q., Si Y.L., Han W.D., Zhao Y.L. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors. Clin. Immunol. 2010;137:347–356. doi: 10.1016/j.clim.2010.08.007. PubMed DOI
Wang B., Yao M., Lv L., Ling Z., Li L. The Human Microbiota in Health and Disease. Engineering. 2017;3:71–82. doi: 10.1016/J.ENG.2017.01.008. DOI
Zhao Y.L., Jiang F., Liu P., Chen W., Yi K.J. Catechins containing a galloyl moiety as potential anti-HIV-1 compounds. Drug Discov. Today. 2012;17:630–635. doi: 10.1016/j.drudis.2012.02.015. PubMed DOI
Campbell E.L., Colgan S.P. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 2019;16:106–120. doi: 10.1038/s41575-018-0079-5. PubMed DOI PMC
Benhammou N., Bekkara F.A., Panovska T.K. Antioxidant and antimicrobial activities of the Pistacia lentiscus and Pistacia atlantica extracts. Afr. J. Pharm. Pharmacol. 2008;2:22–28.
Vamanu E., Gatea F. Correlations between Microbiota Bioactivity and Bioavailability of Functional Compounds: A Mini-Review. Biomedicines. 2020;8:39. doi: 10.3390/biomedicines8020039. PubMed DOI PMC
Zhou Y., Zheng J., Li Y., Xu D.P., Li S., Chen Y.M., Li H.B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients. 2016;8:515. doi: 10.3390/nu8080515. PubMed DOI PMC
González R., Ballester I., López-Posadas R., Suárez M.D., Zarzuelo A., Martínez-Augustin O., Sánchez de Medina F. Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr. 2011;51:331–362. doi: 10.1080/10408390903584094. PubMed DOI
Kim H.P., Son K.H., Chang H.W., Kang S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci. 2004;96:229–245. doi: 10.1254/jphs.CRJ04003X. PubMed DOI
Comalada M., Ballester I., Bailón E., Sierra S., Xaus J., Gálvez J., de Medina F.S., Zarzuelo A. Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: Analysis of the structure-activity relationship. Biochem. Pharmacol. 2006;72:1010–1021. doi: 10.1016/j.bcp.2006.07.016. PubMed DOI
Malireddy S., Kotha S.R., Secor J.D., Gurney T.O., Abbott J.L., Maulik G., Maddipati K.R., Parinandi N.L. Phytochemical Antioxidants Modulate Mammalian Cellular Epigenome: Implications in Health and Disease. Antioxid. Redox Signal. 2012;17:327–339. doi: 10.1089/ars.2012.4600. PubMed DOI PMC
Santangelo C., Varì R., Scazzocchio B., Di Benedetto R., Filesi C., Masella R. Polyphenols, intracellular signalling and inflammation. Ann. Ist. Super. Sanita. 2007;43:394–405. PubMed
Atmani D., Chaher N., Berboucha M., Ayouni K., Lounis H., Boudaoud H., Debbache N., Atmani D. Antioxidant capacity and phenol content of selected Algerian medicinal plants. Food Chem. 2009;112:303–309. doi: 10.1016/j.foodchem.2008.05.077. DOI
Bullitta S., Piluzza G., Manunta M.D.I. Cell-based and chemical assays of the ability to modulate the production of intracellular Reactive Oxygen Species of eleven Mediterranean plant species related to ethnobotanic traditions. Genet. Resour. Crop. Evol. 2013;60:403–412. doi: 10.1007/s10722-012-9842-6. DOI
Remila S., Atmani-Kilani D., Delemasure S., Connat J.L., Azib L., Richard T., Atmani D. Antioxidant, cytoprotective, anti-inflammatory and anticancer activities of Pistacia lentiscus (Anacardiaceae) leaf and fruit extracts. Eur. J. Integr. Med. 2015;7:274–286. doi: 10.1016/j.eujim.2015.03.009. DOI
Dellai A., Souissi H., Borgi W., Bouraoui A., Chouchane N. Antiinflammatory and antiulcerogenic activities of Pistacia lentiscus L. leaves extracts. Ind. Crop. Prod. 2013;49:879–882. doi: 10.1016/j.indcrop.2013.07.010. DOI
Schieber M., Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC
García-Martínez O., De Luna-Bertos E., Ramos-Torrecillas J., Ruiz C., Milia E., Lorenzo M.L., Jimenez B., Sánchez-Ortiz A., Rivas A. Phenolic Compounds in Extra Virgin Olive Oil Stimulate Human Osteoblastic Cell Proliferation. PLoS ONE. 2016;11:e0150045. doi: 10.1371/journal.pone.0150045. PubMed DOI PMC
Chirumbolo S., Bjørklund G. Sulforaphane and 5-fluorouracil synergistically inducing autophagy in breast cancer: A possible role for the Nrf2-Keap1-ARE signaling? Food Chem. Toxicol. 2018;112:414–415. doi: 10.1016/j.fct.2017.12.061. PubMed DOI
Zhou Y., Jiang Z., Lu H., Xu Z., Tong R., Shi J., Jia G. Recent Advances of Natural Polyphenols Activators for Keap1-Nrf2 Signaling Pathway. Chem. Biodivers. 2019;16:e1900400. doi: 10.1002/cbdv.201900400. PubMed DOI
Baratto M.C., Tattini M., Galardi C., Pinelli P., Romani A., Visioli F., Basosi R., Pogni R. Antioxidant activity of galloyl quinic derivatives isolated from P-lentiscus leaves. Free. Radic. Res. 2003;37:405–412. doi: 10.1080/1071576031000068618. PubMed DOI
Catalani S., Palma F., Battistelli S., Benedetti S. Oxidative stress and apoptosis induction in human thyroid carcinoma cells exposed to the essential oil from Pistacia lentiscus aerial parts. PLoS ONE. 2017;12:e0172138. doi: 10.1371/journal.pone.0172138. PubMed DOI PMC
Cappadone C., Mandrone M., Chiocchio I., Sanna C., Malucelli E., Bassi V., Picone G., Poli F. Antitumor Potential and Phytochemical Profile of Plants from Sardinia (Italy), a Hotspot for Biodiversity in the Mediterranean Basin. Plants. 2020;9:26. doi: 10.3390/plants9010026. PubMed DOI PMC
Janssen-Heininger Y.M.W., Poynter M.E., Baeuerle P.A. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappa B. Free Radic. Biol. Med. 2000;28:1317–1327. doi: 10.1016/S0891-5849(00)00218-5. PubMed DOI
Quartu M., Poddighe L., Melis T., Serra M.P., Boi M., Lisai S., Carta G., Murru E., Muredda L., Collu M., et al. Involvement of the endocannabinoid system in the physiological response to transient common carotid artery occlusion and reperfusion. Lipids Health Dis. 2017;16:14. doi: 10.1186/s12944-016-0389-y. PubMed DOI PMC
Iauk L., Ragusa S., Rapisarda A., Franco S., Nicolosi V.M. In vitro antimicrobial activity of Pistacia lentiscus L. extracts: Preliminary report. J. Chemother. 1996;8:207–209. doi: 10.1179/joc.1996.8.3.207. PubMed DOI
Mandrone M., Bonvicini F., Lianza M., Sanna C., Maxia A., Gentilomi G.A., Poli F. Sardinian plants with antimicrobial potential. Biological screening with multivariate data treatment of thirty-six extracts. Ind. Crop. Prod. 2019;137:557–565. doi: 10.1016/j.indcrop.2019.05.069. DOI
Turchetti B., Pinelli P., Buzzini P., Romani A., Heimler D., Franconi F., Martini A. In vitro antimycotic activity of some plant extracts towards yeast and yeast-like strains. Phytother. Res. 2005;19:44–49. doi: 10.1002/ptr.1622. PubMed DOI
Krishna G., Gopalakrishnan G. Chapter 27—Alternative in Vitro Models for Safety and Toxicity Evaluation of Nutraceuticals. In: Gupta R.C., editor. Nutraceuticals. Academic Press; Boston, MA, USA: 2016. pp. 355–385.
Yang C.S., Landau J.M., Huang M.T., Newmark H.L. Inhibition of Carcinogenesis by Dietary Polyphenolic Compounds. Ann. Rev. Nutr. 2001;21:381–406. doi: 10.1146/annurev.nutr.21.1.381. PubMed DOI
Carrol D.H., Chassagne F., Dettweiler M., Quave C.L. Antibacterial Activity of Plant Species Used for Oral Health against Porphyromonas Gingivalis. PLoS ONE. 2020;15:e0239316. doi: 10.1371/journal.pone.0239316. PubMed DOI PMC
Tariq S., Wani S., Rasool W., Shafi K., Bhat M.A., Prabhakar A., Shalla A.H., Rather M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019;134:103580. doi: 10.1016/j.micpath.2019.103580. PubMed DOI
Djenane D., Yanguela J., Montanes L., Djerbal M., Roncales P. Antimicrobial activity of Pistacia lentiscus and Satureja montana essential oils against Listeria monocytogenes CECT 935 using laboratory media: Efficacy and synergistic potential in minced beef. Food Control. 2011;22:1046–1053. doi: 10.1016/j.foodcont.2010.12.015. DOI
Liu X.N., Wang D., Yu C.X., Li T., Liu J.Q., Sun S.J. Potential Antifungal Targets against a Candida Biofilm Based on an Enzyme in the Arachidonic Acid Cascade-A Review. Front. Microbiol. 2016;7:1925. doi: 10.3389/fmicb.2016.01925. PubMed DOI PMC