Towards the Development and Verification of a 3D-Based Advanced Optimized Farm Machinery Trajectory Algorithm
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
818346
Horizon 2020
MUNI/A/1570/2020
Masaryk University
PubMed
33922822
PubMed Central
PMC8123056
DOI
10.3390/s21092980
PII: s21092980
Knihovny.cz E-zdroje
- Klíčová slova
- controlled traffic farming, coverage path planning, digital elevation model, mission planning, soil compaction,
- Publikační typ
- časopisecké články MeSH
Efforts related to minimizing the environmental burden caused by agricultural activities and increasing economic efficiency are key contemporary drivers in the precision agriculture domain. Controlled Traffic Farming (CTF) techniques are being applied against soil compaction creation, using the on-line optimization of trajectory planning for soil-sensitive field operations. The research presented in this paper aims at a proof-of-concept solution with respect to optimizing farm machinery trajectories in order to minimize the environmental burden and increase economic efficiency. As such, it further advances existing CTF solutions by including (1) efficient plot divisions in 3D, (2) the optimization of entry and exit points of both plot and plot segments, (3) the employment of more machines in parallel and (4) obstacles in a farm machinery trajectory. The developed algorithm is expressed in terms of unified modeling language (UML) activity diagrams as well as pseudo-code. Results were visualized in 2D and 3D to demonstrate terrain impact. Verifications were conducted at a fully operational commercial farm (Rostěnice, the Czech Republic) against second-by-second sensor measurements of real farm machinery trajectories.
Zobrazit více v PubMed
Feiden K., Kruse F., Řezník T., Kubíček P., Schentz H., Eberhardt E., Baritz R. Best Practice Network GS SOIL Promoting Access to European, Interoperable and INSPIRE Compliant Soil Information. In: Hřebíček J., Schimak G., Denzer R., editors. Environmental Software Systems. Frameworks of eEnvironment. Volume 359. Springer; Berlin/Heidelberg, Germany: 2011. pp. 226–234. IFIP Advances in Information and Communication Technology.
Michálek V. Z Historie Zemědělství II. Národní Zemědělské Muzeum; Praha, Czech Republic: 2012. Stabilní motory pro zemědělství; pp. 163–172. Prameny a studie č. 49.
Biglarbegian M., Al-Turjman F. Path planning for data collectors in precision agriculture WSNs; Proceedings of the 2014 International Wireless Communications and Mobile Computing Conference (IWCMC); Nicosia, Cyprus. 4–8 August 2014; pp. 483–487.
Lampridi M.G., Kateris D., Vasileiadis G., Marinoudi V., Pearson S., Sørensen C.G., Balafoutis A., Bochtis D. A Case-Based Economic Assessment of Robotics Employment in Precision Arable Farming. Agronomy. 2019;9:175. doi: 10.3390/agronomy9040175. DOI
Oksanen T., Visala A. Coverage Path Planning Algorithms for Agricultural Field Machines: Oksanen & Visala: Coverage Path Planning Algorithms for Agricultural Field Machines. J. Field Robot. 2009;26:651–668. doi: 10.1002/rob.20300. DOI
Driscoll T. Master’s Thesis. Iowa State University; Ames, IA, USA: 2011. Complete Coverage Path Planning in an Agricultural Environment. DOI
Hameed I.A. Intelligent Coverage Path Planning for Agricultural Robots and Autonomous Machines on Three-Dimensional Terrain. J. Intell. Robot. Syst. 2014;74:965–983. doi: 10.1007/s10846-013-9834-6. DOI
Rodias E., Remigio B., Busato P., Bochtis D., Sørensen C., Kun Z. Energy Savings from Optimised In-Field Route Planning for Agricultural Machinery. Sustainability. 2017;9:1956. doi: 10.3390/su9111956. DOI
Chyba J., Kroulik M., Krištof K., Misiewicz P.A. The Influence of Agricultural Traffic on Soil Infiltration Rates. Agron. Res. 2017;15:664–673.
Jin J., Tang L. Coverage Path Planning on Three-Dimensional Terrain for Arable Farming: Coverage Path Planning on 3D Terrain for Arable Farming. J. Field Robot. 2011;28:424–440. doi: 10.1002/rob.20388. DOI
Řezník T., Chytrý J., Trojanová K. Machine Learning-Based Processing Proof-of-Concept Pipeline for Semi-Automatic Sentinel-2 Imagery Download, Cloudiness Filtering, Classifications, and Updates of Open Land Use/Land Cover Datasets. IJGI. 2021;10:102. doi: 10.3390/ijgi10020102. DOI
Řezník T., Lukas V., Charvát K., Charvát K., Jr., Horakova S., Křivánek Z., Herman L. Monitoring of In-Field Variability for Site Specific Crop Management through Open Geospatial Information. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016;41:1023–1028. doi: 10.5194/isprsarchives-XLI-B8-1023-2016. DOI
Charvát K., Řezník T., Lukas V., Jedlička K., Charvát K., Jr., Palma R., Berzins R. Advanced visualisation of big data for agriculture as part of databio development; Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium; Valencia, Spain. 22–27 July 2018; p. 418.
Hamza M.A., Anderson W.K. Soil Compaction in Cropping Systems. Soil Tillage Res. 2005;82:121–145. doi: 10.1016/j.still.2004.08.009. DOI
Noguchi N., Terao H. Path Planning of an Agricultural Mobile Robot by Neural Network and Genetic Algorithm. Comput. Electron. Agric. 1997;18:187–204. doi: 10.1016/S0168-1699(97)00029-X. DOI
Yan H., Wang H., Chen Y., Dai G. Path planning based on constrained delaunay triangulation; Proceedings of the 2008 7th World Congress on Intelligent Control and Automation; Chongqing, China. 25–27 June 2008; DOI
Meuth R.J., Wunsch D.C. Divide and conquer evolutionary TSP solution for vehicle path planning; Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence); Hong Kong, China. 1–6 June 2008; pp. 676–681.
Jin J., Tang L. Optimal Coverage Path Planning for Arable Farming on 2D Surfaces. Trans. ASABE. 2010;53:283–295. doi: 10.13031/2013.29488. DOI
Gao Y., Gray A., Lin T., Hedrick J.K., Tseng H.E., Borrelli F. Predictive control for agile semi-autonomous ground vehicles using motion primitives; Proceedings of the 2012 American Control Conference (ACC); Montreal, QC, Canada. 27–29 June 2012; pp. 4239–4244.
Gutman P.-O., Ioslovich I. Inter-field routes scheduling and rescheduling for an autonomous tractor fleet at the farm; Proceedings of the 2013 18th International Conference on Methods & Models in Automation & Robotics (MMAR); Miedzyzdroje, Poland. 26–29 August 2013; pp. 812–817.
Hameed I.A., Bochtis D., Sørensen C.A. An Optimized Field Coverage Planning Approach for Navigation of Agricultural Robots in Fields Involving Obstacle Areas. Int. J. Adv. Robot. Syst. 2013;10:231. doi: 10.5772/56248. DOI
Plessen M.G., Bemporad A. Shortest path computations under trajectory constraints for ground vehicles within agricultural fields; Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC); Rio de Janeiro, Brazil. 1–4 November 2016; DOI
Plessen M.G., Bemporad A. Reference Trajectory Planning under Constraints and Path Tracking Using Linear Time-Varying Model Predictive Control for Agricultural Machines. Biosyst. Eng. 2017;153:28–41. doi: 10.1016/j.biosystemseng.2016.10.019. DOI
Kroulik M., Hula J., Brant V. Field Trajectories Proposals as a Tool for Increasing Work Efficiency and Sustainable Land Management. Agron. Res. 2018;16:1752–1761. doi: 10.15159/AR.18.151. DOI
Tu X., Tang L. Headland Turning Optimisation for Agricultural Vehicles and Those with Towed Implements. J. Agric. Food Res. 2019;1:100009. doi: 10.1016/j.jafr.2019.100009. DOI
Proj4js JavaScript Library. [(accessed on 9 March 2021)]; Available online: https://proj4js.org.
EPSG EPSG:4326. [(accessed on 9 March 2021)]; Available online: https://epsg.io/4326.
Jedlička K., Luňák T., Šloufová A. Stability and other information about networked GNSS reference station plzeň; Proceedings of the 2nd International Conference on Cartography and GIS; Borovets, Bulgaria. 21–24 January 2008; pp. 329–336.
Řezník T., Pavelka T., Herman L., Leitgeb Š., Lukas V., Širůček P. Deployment and Verifications of the Spatial Filtering of Data Measured by Field Harvesters and Methods of Their Interpolation: Czech Cereal Fields between 2014 and 2018. Sensors. 2019;19:4879. doi: 10.3390/s19224879. PubMed DOI PMC
Řezník T., Herman L., Trojanová K., Pavelka T., Leitgeb Š. Environmental Software Systems. Data Science in Action, Proceedings of the ISESS 2020 International Symposium on Environmental Software Systems, Wageningen, The Netherlands, 5–7 February 2020. Springer; Cham, Switzerland: 2020. Interpolation of data measured by field harvesters: Deployment, comparison and verification; pp. 258–270.
Arslan S., Colvin T.S. Grain Yield Mapping: Yield Sensing, Yield Reconstruction, and Errors. Precis. Agric. 2002;3:135–154. doi: 10.1023/A:1013819502827. DOI
Dimitrov V.P., Borisova L.V., Nurutdinova I.N., Pakhomov V.I., Maksimov V.P. The Problem of Choice of Optimal Technological Decisions on Harvester Control. MATEC Web Conf. 2018;226:04023. doi: 10.1051/matecconf/201822604023. DOI
Sotnar M., Pospíšil J., Mareček J., Dokukilová T., Novotný V. Influence of the Combine Harvester Parameter Settings on Harvest Losses. Acta Technol. Agric. 2018;21:105–108. doi: 10.2478/ata-2018-0019. DOI
Royce W.W. Managing the development of large software systems. Technical Papers of Western Electronic Show and Convention; Proceedings of the IEEE WESCON; Los Angeles, CA, USA. 25–28 August 1970; pp. 1–9.
Skokanová H., Netopil P., Havlíček M., Šarapatka B. The Role of Traditional Agricultural Landscape Structures in Changes to Green Infrastructure Connectivity. Agric. Ecosyst. Environ. 2020;302:107071. doi: 10.1016/j.agee.2020.107071. DOI
EPSG EPSG:32633. [(accessed on 9 March 2021)]; Available online: https://epsg.io/32633.