Myristic Acid Serum Levels and Their Significance for Diagnosis of Systemic Inflammatory Response, Sepsis, and Bacteraemia
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TUH, 00064190
Ministerstvo Zdravotnictví Ceské Republiky
IKEM, IN 00023001
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33923419
PubMed Central
PMC8074080
DOI
10.3390/jpm11040306
PII: jpm11040306
Knihovny.cz E-resources
- Keywords
- SIRS, bacteraemia, biomarker, gas chromatography/mass spectrometry (GC/MS), myristic acid, sepsis, septic shock,
- Publication type
- Journal Article MeSH
Myristic acid is identified as a metabolite with the highest diagnostic sensitivity and specificity in the metabolome of patients with bacteraemia. Its significant decrease has been observed in patients with septic shock not responding to treatment. Another study has reported a close correlation of myristic acid levels with the outcome of severe trauma patients. Myristic acid concentrations were investigated in a cohort of septic patients and patients with Systemic Inflammatory Response Syndrome (SIRS) in 5 consecutive days following diagnosis and compared to healthy controls. The study population groups-Sepsis 34, SIRS 31, and Healthy Control 120 patients were included. Serum samples were analyzed using gas chromatography and mass spectrometry. The myristic acid levels in the Sepsis Group and SIRS Group were found to be significantly higher when compared to healthy controls. The serum concentration of myristic acid in septic patients with bacteraemia was higher than in septic patients without bacteraemia. Most patients with sepsis and SIRS had the highest levels of myristic acid within 24 h after an established diagnosis. Myristic acid should be considered as a new candidate marker of severe inflammation and sepsis. A simplified analysis and sufficient body of validated data are necessary steps towards the introduction of this metabolite into routine clinical practice.
See more in PubMed
Rello J., van Engelen T.S.R., Alp E., Calandra T., Cattoir V., Kern W.V., Netea M.G., Nseir S., Opal S.M., van de Veerdonk F.L., et al. Towards Precision Medicine in Sepsis: A Position Paper from the European Society of Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2018;24:1264–1272. doi: 10.1016/j.cmi.2018.03.011. PubMed DOI
Atreya M.R., Wong H.R. Precision Medicine in Pediatric Sepsis. Curr. Opin. Pediatr. 2019;31:322–327. doi: 10.1097/MOP.0000000000000753. PubMed DOI PMC
Seymour C.W., Gomez H., Chang C.-C.H., Clermont G., Kellum J.A., Kennedy J., Yende S., Angus D.C. Precision Medicine for All? Challenges and Opportunities for a Precision Medicine Approach to Critical Illness. Crit. Care (Lond. Engl.) 2017;21:1–11. doi: 10.1186/s13054-017-1836-5. PubMed DOI PMC
Kosmides A.K., Kamisoglu K., Calvano S.E., Corbett S.A., Androulakis I.P. Metabolomic Fingerprinting: Challenges and Opportunities. Crit. Rev. Biomed. Eng. 2013;41:205–221. doi: 10.1615/CritRevBiomedEng.2013007736. PubMed DOI PMC
Eckerle M., Ambroggio L., Puskarich M.A., Winston B., Jones A.E., Standiford T.J., Stringer K.A. Metabolomics as a Driver in Advancing Precision Medicine in Sepsis. Pharmacotherapy. 2017;37:1023–1032. doi: 10.1002/phar.1974. PubMed DOI PMC
Evangelatos N., Bauer P., Reumann M., Satyamoorthy K., Lehrach H., Brand A. Metabolomics in Sepsis and Its Impact on Public Health. Public Health Genom. 2017;20:274–285. doi: 10.1159/000486362. PubMed DOI
Kamisoglu K., Sleight K.E., Calvano S.E., Coyle S.M., Corbett S.A., Androulakis I.P. Temporal Metabolic Profiling of Plasma during Endotoxemia in Humans. Shock. 2013;40:519–526. doi: 10.1097/SHK.0000000000000063. PubMed DOI PMC
Seymour C.W., Yende S., Scott M.J., Pribis J., Mohney R.P., Bell L.N., Chen Y.-F., Zuckerbraun B.S., Bigbee W.L., Yealy D.M., et al. Metabolomics in Pneumonia and Sepsis: An Analysis of the GenIMS Cohort Study. Intensive Care Med. 2013;39:1423–1434. doi: 10.1007/s00134-013-2935-7. PubMed DOI PMC
Langley R.J., Tsalik E.L., van Velkinburgh J.C., Glickman S.W., Rice B.J., Wang C., Chen B., Carin L., Suarez A., Mohney R.P., et al. An Integrated Clinico-Metabolomic Model Improves Prediction of Death in Sepsis. Sci. Transl. Med. 2013;5:195ra95. doi: 10.1126/scitranslmed.3005893. PubMed DOI PMC
Su L., Huang Y., Zhu Y., Xia L., Wang R., Xiao K., Wang H., Yan P., Wen B., Cao L., et al. Discrimination of Sepsis Stage Metabolic Profiles with an LC/MS-MS-Based Metabolomics Approach. BMJ Open Respir. Res. 2014;1:e000056. doi: 10.1136/bmjresp-2014-000056. PubMed DOI PMC
Kauppi A.M., Edin A., Ziegler I., Mölling P., Sjöstedt A., Gylfe Å., Strålin K., Johansson A. Metabolites in Blood for Prediction of Bacteremic Sepsis in the Emergency Room. PLoS ONE. 2016;11:e0147670. doi: 10.1371/journal.pone.0147670. PubMed DOI PMC
Cambiaghi A., Pinto B.B., Brunelli L., Falcetta F., Aletti F., Bendjelid K., Pastorelli R., Ferrario M. Characterization of a Metabolomic Profile Associated with Responsiveness to Therapy in the Acute Phase of Septic Shock. Sci. Rep. 2017;7:1–16. doi: 10.1038/s41598-017-09619-x. PubMed DOI PMC
Servià L., Jové M., Sol J., Pamplona R., Badia M., Montserrat N., Portero-Otin M., Trujillano J. A Prospective Pilot Study Using Metabolomics Discloses Specific Fatty Acid, Catecholamine and Tryptophan Metabolic Pathways as Possible Predictors for a Negative Outcome after Severe Trauma. Scand. J. Trauma Resusc. Emerg. Med. 2019;27:1–10. doi: 10.1186/s13049-019-0631-5. PubMed DOI PMC
Zazula R., Průcha M., Pehal F., Dryahina K., Moravec M., Müller M., Nejtek T. Kinetics of Myristic Acid Following Accidentally Induced Septic Response. Prague Med. Rep. 2019;120:103–106. doi: 10.14712/23362936.2019.15. PubMed DOI
Singer M., Deutschman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.-D., Coopersmith C.M., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC
Vincent J.L., Moreno R., Takala J., Willatts S., De Mendonça A., Bruining H., Reinhart C.K., Suter P.M., Thijs L.G. The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. On Behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–710. doi: 10.1007/BF01709751. PubMed DOI
American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Crit. Care Med. 1992;20:864–874. doi: 10.1097/00003246-199206000-00025. PubMed DOI
Harbarth S., Holeckova K., Froidevaux C., Pittet D., Ricou B., Grau G.E., Vadas L., Pugin J. Diagnostic Value of Procalcitonin, Interleukin-6, and Interleukin-8 in Critically Ill Patients Admitted with Suspected Sepsis. Am. J. Respir. Crit. Care Med. 2001;164:396–402. doi: 10.1164/ajrccm.164.3.2009052. PubMed DOI
Wyllie D.H., Bowler I.C.J.W., Peto T.E.A. Bacteraemia Prediction in Emergency Medical Admissions: Role of C Reactive Protein. J. Clin. Pathol. 2005;58:352–356. doi: 10.1136/jcp.2004.022293. PubMed DOI PMC
Hoeboer S.H., van der Geest P.J., Nieboer D., Groeneveld A.B.J. The Diagnostic Accuracy of Procalcitonin for Bacteraemia: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2015;21:474–481. doi: 10.1016/j.cmi.2014.12.026. PubMed DOI
Prucha M., Bellingan G., Zazula R. Sepsis Biomarkers. Clin. Chim. Acta Int. J. Clin. Chem. 2015;440:97–103. doi: 10.1016/j.cca.2014.11.012. PubMed DOI
Bréchot N., Hékimian G., Chastre J., Luyt C.-E. Procalcitonin to Guide Antibiotic Therapy in the ICU. Int. J. Antimicrob. Agents. 2015;46:S19–S24. doi: 10.1016/j.ijantimicag.2015.10.012. PubMed DOI
Samsudin I., Vasikaran S.D. Clinical Utility and Measurement of Procalcitonin. Clin. Biochem. Rev. 2017;38:59–68. PubMed PMC
Albrich W.C., Harbarth S. Pros and Cons of Using Biomarkers versus Clinical Decisions in Start and Stop Decisions for Antibiotics in the Critical Care Setting. Intensive Care Med. 2015;41:1739–1751. doi: 10.1007/s00134-015-3978-8. PubMed DOI
Søgaard M., Nørgaard M., Pedersen L., Sørensen H.T., Schønheyder H.C. Blood Culture Status and Mortality among Patients with Suspected Community-Acquired Bacteremia: A Population-Based Cohort Study. BMC Infect. Dis. 2011;11:139. doi: 10.1186/1471-2334-11-139. PubMed DOI PMC
Laupland K.B. Incidence of Bloodstream Infection: A Review of Population-Based Studies. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2013;19:492–500. doi: 10.1111/1469-0691.12144. PubMed DOI
Husek P., Liebich H.M. Organic Acid Profiling by Direct Treatment of Deproteinized Plasma with Ethyl Chloroformate. J. Chromatogr. B Biomed. Appl. 1994;656:37–43. doi: 10.1016/0378-4347(94)00089-1. PubMed DOI
Zong G., Li Y., Wanders A.J., Alssema M., Zock P.L., Willett W.C., Hu F.B., Sun Q. Intake of Individual Saturated Fatty Acids and Risk of Coronary Heart Disease in US Men and Women: Two Prospective Longitudinal Cohort Studies. BMJ. 2016;355:i5796. doi: 10.1136/bmj.i5796. PubMed DOI PMC
Ebbesson S.O.E., Voruganti V.S., Higgins P.B., Fabsitz R.R., Ebbesson L.O., Laston S., Harris W.S., Kennish J., Umans B.D., Wang H., et al. Fatty Acids Linked to Cardiovascular Mortality Are Associated with Risk Factors. Int. J. Circumpolar Health. 2015;74:28055. doi: 10.3402/ijch.v74.28055. PubMed DOI PMC
Rietschel E.T., Brade L., Brandenburg K., Flad H.D., de Jong-Leuveninck J., Kawahara K., Lindner B., Loppnow H., Lüderitz T., Schade U. Chemical Structure and Biologic Activity of Bacterial and Synthetic Lipid A. Rev. Infect. Dis. 1987;9:S527–S536. doi: 10.1093/clinids/9.Supplement_5.S527. PubMed DOI
Steimle A., Autenrieth I.B., Frick J.-S. Structure and Function: Lipid A Modifications in Commensals and Pathogens. Int. J. Med. Microbiol. IJMM. 2016;306:290–301. doi: 10.1016/j.ijmm.2016.03.001. PubMed DOI
Jennings B.C., Linder M.E. Chapter 200-Regulation of G Proteins by Covalent Modification. In: Bradshaw R.A., Dennis E.A., editors. Handbook of Cell Signaling. 2nd ed. Academic Press; Cambridge, MA, USA: 2010.
Stillwell W. Chapter 6-Membrane Proteins. In: Stillwell W., editor. An Introduction to Biological Membranes. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2016.
Nelson A.R., Borland L., Allbritton N.L., Sims C.E. Myristoyl-Based Transport of Peptides into Living Cells. Biochemistry. 2007;46:14771–14781. doi: 10.1021/bi701295k. PubMed DOI PMC
Udenwobele D.I., Su R.-C., Good S.V., Ball T.B., Varma Shrivastav S., Shrivastav A. Myristoylation: An Important Protein Modification in the Immune Response. Front. Immunol. 2017;8:751. doi: 10.3389/fimmu.2017.00751. PubMed DOI PMC
Korbecki J., Bajdak-Rusinek K. The Effect of Palmitic Acid on Inflammatory Response in Macrophages: An Overview of Molecular Mechanisms. Inflamm. Res. Off. J. Eur. Histamine Res. Soc. 2019;68:915–932. doi: 10.1007/s00011-019-01273-5. PubMed DOI PMC
Kosciuk T., Lin H. N-Myristoyltransferase as a Glycine and Lysine Myristoyltransferase in Cancer, Immunity, and Infections. ACS Chem. Biol. 2020;15:1747–1758. doi: 10.1021/acschembio.0c00314. PubMed DOI PMC
Maurer-Stroh S., Eisenhaber F. Myristoylation of Viral and Bacterial Proteins. Trends Microbiol. 2004;12:178–185. doi: 10.1016/j.tim.2004.02.006. PubMed DOI
Sobocińska J., Roszczenko-Jasińska P., Ciesielska A., Kwiatkowska K. Protein Palmitoylation and Its Role in Bacterial and Viral Infections. Front. Immunol. 2017;8:2003. doi: 10.3389/fimmu.2017.02003. PubMed DOI PMC
Fong Y.M., Marano M.A., Moldawer L.L., Wei H., Calvano S.E., Kenney J.S., Allison A.C., Cerami A., Shires G.T., Lowry S.F. The Acute Splanchnic and Peripheral Tissue Metabolic Response to Endotoxin in Humans. J. Clin. Investig. 1990;85:1896–1904. doi: 10.1172/JCI114651. PubMed DOI PMC
Lowry S.F. Human Endotoxemia: A Model for Mechanistic Insight and Therapeutic Targeting. Shock. 2005;24:94–100. doi: 10.1097/01.shk.0000191340.23907.a1. PubMed DOI
Calvano S.E., Coyle S.M. Experimental Human Endotoxemia: A Model of the Systemic Inflammatory Response Syndrome? Surg. Infect. 2012;13:293–299. doi: 10.1089/sur.2012.155. PubMed DOI PMC
Dandona P., Nix D., Wilson M.F., Aljada A., Love J., Assicot M., Bohuon C. Procalcitonin Increase after Endotoxin Injection in Normal Subjects. J. Clin. Endocrinol. Metab. 1994;79:1605–1608. doi: 10.1210/jcem.79.6.7989463. PubMed DOI
Wright M.H., Paape D., Storck E.M., Serwa R.A., Smith D.F., Tate E.W. Global Analysis of Protein N-Myristoylation and Exploration of N-Myristoyltransferase as a Drug Target in the Neglected Human Pathogen Leishmania Donovani. Chem. Biol. 2015;22:342–354. doi: 10.1016/j.chembiol.2015.01.003. PubMed DOI PMC
Wright M.H., Heal W.P., Mann D.J., Tate E.W. Protein Myristoylation in Health and Disease. J. Chem. Biol. 2010;3:19–35. doi: 10.1007/s12154-009-0032-8. PubMed DOI PMC
Zazula R., Prucha M., Tyll T., Kieslichova E. Induction of Procalcitonin in Liver Transplant Patients Treated with Anti-Thymocyte Globulin. Crit. Care Lond. Engl. 2007;11:1–5. doi: 10.1186/cc6202. PubMed DOI PMC
de Oliveira V.M., Moraes R.B., Stein A.T., Wendland E.M. Accuracy of C-Reactive Protein as a Bacterial Infection Marker in Critically Immunosuppressed Patients: A Systematic Review and Meta-Analysis. J. Crit. Care. 2017;42:129–137. doi: 10.1016/j.jcrc.2017.07.025. PubMed DOI
Sepsis as a Challenge for Personalized Medicine