Experimental Study of Straw-Based Eco-Panel Using a Small Ignition Initiator

. 2021 Apr 20 ; 13 (8) : . [epub] 20210420

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33924055

Straw, a natural cellulose-based material, has become part of building elements. Eco-panels, compressed straw in a cardboard casing, is used as building insulation. Eco-panel is a secondary product with excellent insulating properties. If suitably fire-treated (insulation and covering), straw panels' fire resistance may be increased. This contribution deals with monitoring the behavior of eco-panels exposed to a small ignition initiator (flame). The samples consisted of compressed straw boards coated with a 40 mm thick cardboard. Samples were exposed to a flame for 5 and 10 min. The influence of the selected factors (size of the board, orientation of flame with the sample) were compared on the basis of experimentally obtained data: mass loss. The results obtained do not show a statistically significant influence of the position of the sample and the initiating source (flame). The results presented in the article confirm the justifiability of fire tests. As the results of the experiments prove, the position of a small burner for igniting such material is also important. Such weakness of the material can also be eliminated by design solutions in the construction. The experiment on larger samples also confirmed the justifiability of fire tests along with the need for flame retardancy of such material for its safe application in construction.

Zobrazit více v PubMed

Al Shawaf Z. An Experimental Study of Dry Onion Skins as Renewable Materials for Interior Finishes and Their Impact on Indoor Environment. Dissertation Work. Faculty of Engineering & IT. The British University in Dubai; Dubai, United Arab Emirates: 2014. [(accessed on 29 September 2020)]. p. 103. Available online: https://bspace.buid.ac.ae/bitstream/1234/1000/1/2013133124.pdf.

Prečo Si Postaviť Dom Zo Slamy? [(accessed on 29 September 2020)]; Available online: https://www.stavebnictvoabyvanie.sk/stavebnictvo/4218-preco-si-postavit-dom-zo-slamy. (In Slovakian)

Secchi S., Asdrubali F., Cellai G., Nannipieri E., Rotili A., Vannucchi I. Experimental and environmental analysis of new sound-absorbing and insulating elements in recycled cardboard. J. Build. Eng. 2016;5:1–12. doi: 10.1016/j.jobe.2015.10.005. DOI

Ekopanely-Stavební Desky Ze Slámy. [(accessed on 18 April 2018)]; Available online: https://www2.zf.jcu.cz/~moudry/databaze/Ekopanely.htm?fbclid=IwAR2OscJd9wM2Bhxm5tJBursy0YvOQtXTCxV2AvRQzXBCU6JeV07gVTWiDh0. (In Czech)

Spottiswoode A.J., Bank L.C., Shapira A. Investigation of paperboard tubes as formwork for concrete bridge decks. Constr Build Mater. 2012;30:767–775. doi: 10.1016/j.conbuildmat.2011.12.033. DOI

Kadlicová P., Gašpercová S., Makovicka Osvaldova L. Monitoring of Weight Loss of Fibreboard during Influence of Flame. Procedia Eng. 2017;192:393–398. doi: 10.1016/j.proeng.2017.06.068. DOI

Antov P., Savov V., Neykov N. Possibilities for Manufacturing Insulation Boards with Participation of Recycled Lignocellulosic Fibres. Manag. Sustain. Dev. 2019;75:72–76. doi: 10.13140/RG.2.2.34391.11680. DOI

Delgado B., López González D., Godbout S., Lagacé R., Giroir-Fendler A., Avalos Ramirez A. A study of torrefied cardboard characterization and applications: Composition, oxidation kinetics and methane adsorption. Sci. Total Environ. 2017;593–594:406–417. doi: 10.1016/j.scitotenv.2017.03.119. PubMed DOI

EKOPANEL-Slaměný Lisovaný Panel. [(accessed on 17 April 2020)]; Available online: https://www.prirodnistavba.cz/ekopanel-slameny-lisovany-panel-3426.html. (In Czech)

Cai Z., Robert J.R. Mechanical Properties of Wood-Based Composite Materials. Wood Handbook: Wood as an Engineering Material: Chapter 12. U.S. Dept. of Agriculture; Madison, WI, USA: 2010. pp. 12.1–12.12. General Technical Report FPL, GTR-190.

Yang H., Kim D., Kim H. Rice straw-wood particle composite for sound absorbing wooden construction materials. Bioresour. Technol. 2003;86:117–121. doi: 10.1016/S0960-8524(02)00163-3. PubMed DOI

Sadzevicius R., Gurskis V., Ramukevičius D. Sustainable construction of agro-industrial buildings from straw panels; Proceedings of the Rural Development 2015; Kaunas, Lithuania. 23–24 April 2015.

Torun G., Korkut Ö. Preparation of Cement Based Composites and Cellulosic Panels from Barley Straw for Thermal Insulation. [(accessed on 29 September 2020)];GU J. Sci. 2017 30:31–32. Available online: https://dergipark.org.tr/tr/download/article-file/290214.

Antov P., Savov V., Krišťák Ľ., Réh R., Mantanis G.I. Eco-Friendly, High-Density Fiberboards Bonded with Urea-Formaldehyde and Ammonium Lignosulfonate. Polymers. 2021;13:220. doi: 10.3390/polym13020220. PubMed DOI PMC

Antov P., Krišt’ák L., Réh R., Savov V., Papadopoulos A.N. Eco-Friendly Fiberboard Panels from Recycled Fibers Bonded with Calcium Lignosulfonate. Polymers. 2021;13:639. doi: 10.3390/polym13040639. PubMed DOI PMC

Teslík J., Vodičková M., Kutilová K. The Assessment of Reaction to Fire of Crushed Straw. Appl. Mech. Mater. 2016;824:148–155. doi: 10.4028/www.scientific.net/AMM.824.148. DOI

Štenclová E. Spúšť v Žiline. Most Poškodili Horiace Pivné Prepravky, Fľaše A Slama (Trigger in Žilina. The bridge was Damaged by Burning Beer Crates, Bottles and Straw) [(accessed on 21 May 2019)]; Available online: https://spravy.pravda.sk/regiony/clanok/512806-poziar-budovy-pivnych-prepraviek-flias-a-slamy-poskodil-zilinsky-most.

Yang Y., Liu J., Jin S., Li T. Experimental study about influence of particle size and oxygen atmosphere on straw powder’s combustion characteristics; Proceedings of the 2011 International Conference on Electrical and Control Engineering; Yichang, China. 16–18 September 2011; pp. 3470–3473. DOI

Pepich Š. Slama Ako Zdroj Energie Z Poľnohospodárstva (Straw as a Source of Energy from Agriculture) [(accessed on 17 April 2020)]; Available online: http://old.agroporadenstvo.sk/oze/biomasa/slama.pdf. (In Slovakian)

Saidur R., Abdelaziz E., Demirbas A., Hossain M., Mekhilef S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011;15:2262–2289. doi: 10.1016/j.rser.2011.02.015. DOI

Pepich Š. Pilotný Project Energetického Využitia Biomasy. [(accessed on 1 December 2010)]; Available online: http://www.tsup.sk/files/vyuzitie_poln.biomasy_na_energet.ucely.pdf. (In Slovakian)

Hajinajaf N., Mehrabadi A., Tavakoli O. Practical strategies to improve harvestable biomass energy yield in microalgal culture: A review. Biomass Bioenergy. 2021;145:105941. doi: 10.1016/j.biombioe.2020.105941. DOI

Schnorf V., Trutnevyte E., Bowman G., Burg V. Biomass transport for energy: Cost, energy and CO2 performance of forest wood and manure transport chains in Switzerland. J. Clean. Prod. 2021;293:125971. doi: 10.1016/j.jclepro.2021.125971. DOI

Xie T., Wei R., Wang Z., Wang J. Comparative analysis of thermal oxidative decomposition and fire characteristics for different straw powders via thermogravimetry and cone calorimetry. Process. Saf. Environ. Prot. 2020;134:121–130. doi: 10.1016/j.psep.2019.11.028. DOI

Růžička J. Požární Odolnost Obvodových Stěn Pro Pasivní Domy S Využitím Slaměných Balíků Jako Tepelné Izolace. [(accessed on 27 August 2012)]; Available online: https://stavba.tzb-info.cz/obalove-konstrukce-nizkoenergetickych-staveb/8974-pozarni-odolnost-obvodovych-sten-pro-pasivni-domy-s-vyuzitim-slamenych-baliku-jako-tepelne-izolace. (In Czech)

Růžička J., Pokorný M. Požární Odolnost Obvodových Stěn NED, PD z Přírodních a Recyklovaných Stavebních Materiálů. Stavebnictví. 2011;11:34–39. (In Czech)

Kozłowski R., Władyka-Przybylak M. Flammability and fire resistance of composites reinforced by natural fibers. Polym. Adv. Technol. 2008;19:446–453. doi: 10.1002/pat.1135. DOI

Chybík J. Přírodní Stavební Materiály (Natural Building Materials) Grada Publishing; Prague, Czech Republic: 2009. p. 272. (In Czech)

Pokorný J., Kučera P., Vlček V. Specific knowledge in assessment of local fire for design of building structures. Adv. Mat. Res. 2014;1001:362–367. doi: 10.4028/www.scientific.net/AMR.1001.362. DOI

Hýsková P., Hýsek Š., Schönfelder O., Šedivka P., Lexa M., Jarský V. Utilization of agricultural rests: Straw-based composite panels made from enzymatic modified wheat and rapeseed straw. Ind. Crops Prod. 2020;144:112067. doi: 10.1016/j.indcrop.2019.112067. DOI

Theis B. Straw Bale Fire Safety. [(accessed on 30 July 2003)]; Available online: http://www.naturalbuildingcoalition.ca/Resources/Documents/Technical/strawbale_fire_safety.pdf.

Sobotka M. The Choice of a Suitable Material for the Building of the Detached House; ČVUT Praha. [(accessed on 30 June 2014)]; Available online: http://stretech.fs.cvut.cz/2014/sbornik_2014/zdar%20nad%20sazavou_sobotka-volba%20materialu.pdf. (In Czech)

Makovicka Osvaldova L. Wooden Façades and Fire Safety. Springer; Cham, Switzerland: 2020. Experiment Description. SpringerBriefs in Fire. DOI

Weisberger J.M., Richter J.P., Mollendorf J.C., DesJardin P.E. An emissions-based fuel mass loss measurement for wood-fired hydronic heaters. Biomass Bioenergy. 2020;142:105731. doi: 10.1016/j.biombioe.2020.105731. DOI

Kačíková D., Makovická L.M. Wood burning rate of various tree parties. [(accessed on 15 April 2021)];Acta Fac. Xylologiae. 2009 51:27–32. Available online: https://df.tuzvo.sk/sites/default/files/04-1-09-kacikova-makovicka-osvaldova.pdf. (In Slovakian)

Hao H., Chow C.L., Lau D. Effect of heat flux on combustion of different wood species. Fuel. 2020;278:118325. doi: 10.1016/j.fuel.2020.118325. DOI

Ferrandez-Garcia C.C., Garcia-Ortuño T., Ferrandez-Garcia M.T., Ferrandez-Villena M., Ferrandez-Garcia C.E. Fire-resistance, physical, and mechanical characterization of binderless rice straw particleboards. BioResources. 2017;12:8539–8549. doi: 10.15376/biores.12.4.8539-8549. DOI

Fire Classification. [(accessed on 12 June 2015)]; Available online: http://www.paroc.com/knowhow/fire/fire-classification.

European Committe for Standartion . EN 13501-2+A1 2010. Fire Classification of Construction Products and Building Elements—Part 2: Classification Using Test Data from Resistance Fire Tests, Excluding Ventilation Services. European Committe for Standartion; Brussels, Belgium: 2010.

Cao G.L., Zhang X., Wang Y., Zheng F.C. Estimation of emissions from field burning of crop straw in China. Chin. Sci. Bull. 2008;53:784–790. doi: 10.1007/s11434-008-0145-4. DOI

Gadde B., Bonnet S., Menke C., Garivait S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ. Pollut. 2009;157:1554–1558. doi: 10.1016/j.envpol.2009.01.004. PubMed DOI

Jenkins B.B., Miles L.T., Baxter L.L. Combustion properties of biomass. Fuel Process. Technol. 1998;54:17–46. doi: 10.1016/S0378-3820(97)00059-3. DOI

Fire Resistance Test Report No Pr-18-2.204/En Loadbearing External Wall Made of Boards Ecopanel Eco 2 Boards. Testing Laboratory; Veselí nad Lužnicí, Czech Republic: 2018. Testing Laboratory No. 1206.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...