In Comparison to Pathological Q Waves, Selvester Score is a Superior Diagnostic Indicator of Increased Long-Term Mortality Risk in ST Elevation Myocardial Infarction Patients Treated with Primary Coronary Intervention
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NH/16/2/32499
British Heart Foundation - United Kingdom
New Horizons Grant NH/16/2/32499
British Heart Foundation - United Kingdom
PubMed
33925108
PubMed Central
PMC8146038
DOI
10.3390/diagnostics11050799
PII: diagnostics11050799
Knihovny.cz E-zdroje
- Klíčová slova
- Q wave, ST elevation myocardial infarction, Selvester score, primary percutaneous coronary intervention,
- Publikační typ
- časopisecké články MeSH
The development of pathological Q waves has long been correlated with worsened outcome in patients with ST elevation myocardial infarction (STEMI). In this study, we investigated long-term mortality of STEMI patients treated by primary percutaneous coronary intervention (PPCI) and compared predictive values of Q waves and of Selvester score for infarct volume estimation. Data of 283 consecutive STEMI patients (103 females) treated by PPCI were analysed. The presence of pathological Q wave was evaluated in pre-discharge electrocardiograms (ECGs) recorded ≥72 h after the chest pain onset (72 h Q). The Selvester score was evaluated in acute ECGs (acute Selvester score) and in the pre-discharge ECGs (72 h Selvester score). The results were related to total mortality and to clinical and laboratory variables. A 72 h Q presence and 72 h Selvester score ≥6 was observed in 184 (65.02%) and 143 (50.53%) patients, respectively. During a follow-up of 5.69 ± 0.66 years, 36 (12.7%) patients died. Multivariably, 72 h Selvester score ≥6 was a strong independent predictor of death, while a predictive value of the 72 h Q wave was absent. In high-risk subpopulations defined by clinical and laboratory variables, the differences in total mortality were highly significant (p < 0.01 for all subgroups) when stratified by 72 h Selvester score ≥6. On the contrary, the additional risk-prediction by 72 h Q presence was either absent or only borderline. In contemporarily treated STEMI patients, Selvester score is a strong independent predictor of long-term all-cause mortality. On the contrary, the prognostic value of Q-wave presence appears limited in contemporarily treated STEMI patients.
Zobrazit více v PubMed
Antman E.M., Fox K.M. Guidelines for the diagnosis and management of unstable angina and non-Q-wave myocardial infarction: Proposed revisions. International Cardiology Forum. Am. Heart J. 2000;139:461–475. doi: 10.1016/S0002-8703(00)90090-5. PubMed DOI
Goodman S.G., Barr A., Langer A., Wagner G.S., Fitchett D., Armstrong P.W., Naylor C.D. Development and prognosis of non-Q-wave myocardial infarction in the thrombolytic era. Am. Heart J. 2002;144:243–250. doi: 10.1067/mjh.2002.124059. PubMed DOI
Keeley E.C., Boura J.A., Grines C.L. Primary angioplasty vs. intravenous thrombolytic therapy for acute myocardial infarction: A quantitative review of 23 randomized trials. Lancet. 2003;361:13–20. doi: 10.1016/S0140-6736(03)12113-7. PubMed DOI
Widimsky P., Budesinsky T., Vorac D., Groch L., Zelizko M., Aschermann M., Branny M., Stastek J., Formanek P. Long distance transport for primary angioplasty vs. immediate thrombolysis in acute myocardial infarction. Final results of the randomized national multicentre trial PRAGUE-2. Eur. Heart J. 2003;24:94–104. doi: 10.1016/S0195-668X(02)00468-2. PubMed DOI
Halkin A., Fourey D., Roth A., Boyko V., Behar S. Incidence and prognosis of non-Q-wave vs. Q-wave myocardial infarction following catheter-based reperfusion therapy. Q. J. Med. 2009;102:401–406. doi: 10.1093/qjmed/hcp037. PubMed DOI
Raunio H., Rissanen V., Romppanen T., Jokinen Y., Rehnberg S., Helin M., Pyorala K. Changes in the QRS complex and ST segment in transmural and subendocardial myocardial infarctions. A clinicopathologic study. Am. Heart J. 1979;98:176–184. doi: 10.1016/0002-8703(79)90219-9. PubMed DOI
Delewi R., Ijff G., Hoef T.P., Hirsch A., Robbers L.F., Nijveldt R., Laan A.M., Vleuten P.A., Lucas C., Tijssen J.G.P., et al. Pathological Q waves in myocardial infarction in patients treated by primary PCI. J. Am. Coll. Cardiol. Img. 2013;6:324–331. doi: 10.1016/j.jcmg.2012.08.018. PubMed DOI
Selvester R.H., Wagner J.O., Rubin H.B. Quantitation of myocardial infarct size and location by electrocardiogram and vectorcardiogram. In: Snellen H.A., Hemker H.C., Hugenholtz P.G., Van Bemmel J.H., editors. Quantitation in Cardiology. Volume 8. Springer; Dordrecht, The Netherlands: 1971. pp. 33–44.
Ideker R.E., Wagner G.S., Ruth W.K., Alonso D.R., Bishop S.P., Bloor C.M., Fallon J.T., Gottlieb G.J., Hackel D.B., Phillips H.R., et al. Evaluation of a QRS scoring system for estimating myocardial infarct size. II. Correlation with quantitative anatomic findings for anterior infarcts. Am. J. Cardiol. 1982;49:1604–1614. doi: 10.1016/0002-9149(82)90235-1. PubMed DOI
Strauss D.G., Selvester R.H. The QRS complex—A biomarker that “images” the heart: QRS scores to quantify myocardial scar in the presence of normal and abnormal ventricular conduction. J. Electrocardiol. 2009;42:85–96. doi: 10.1016/j.jelectrocard.2008.07.011. PubMed DOI
Tjandrawidjaja M.C., Fu Y., Westerhout C.M., Wagner G.S., Granger C.B., Armstrong P.W. APEX-AMI Investigators. Usefulness of the QRS score as a strong prognostic marker in patients discharged after undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction. Am. J. Cardiol. 2010;106:630–634. doi: 10.1016/j.amjcard.2010.04.013. PubMed DOI
Steg G., James S.K., Atar D., Badano L.P., Blömstrom-Lundqvist C., Borger M.A., Di Mario C., Dickstein K., Ducrocq G., Fernandez-Aviles F., et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2012;33:2569–2619. doi: 10.1016/j.rec.2012.10.010. PubMed DOI
Ibanez B., James S., Agewall S., Antunes M.J., Bucciarelli-Ducci C., Bueno H., Caforio A.L.P., Crea F., Goudevenos J.A., Halvorsen S., et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) Eur. Heart J. 2018;39:119–177. doi: 10.1093/eurheartj/ehx393. PubMed DOI
O.´Gara M.T., Kushner F.G., Ascheim D.D., Casey D.E., Chung M.K., Lemos J.A., Ettinger S.M., Fang J.C., Fesmire F.M., Franklin B.A., et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction. Circulation. 2013;127:362–425. doi: 10.1161/CIR.0b013e3182742cf6. PubMed DOI
Thygesen K., Alpert J.S., Jaffe A.S., Chaitman B.R., Bax J.J., Morrow D.A., White H.D., Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/ American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction) Fourth universal definition of myocardial infarction. Glob. Heart. 2018;13:305–338. doi: 10.1016/j.gheart.2018.08.004. PubMed DOI
Pardee H.E. The significance of an electrocardiogram with a large Q in lead 3. Arch. Intern. Med. 1930;46:470–481. doi: 10.1001/archinte.1930.00140150111009. DOI
Thygesen K., Alpert J.S., White H.D., Joint ESC/ACCf/AHA/WHF Task Force for the Redefinition of Myocardial Infarction Universal definition of myocardial infarction. Eur. Heart J. 2007;28:2525–2538. doi: 10.1093/eurheartj/ehm355. PubMed DOI
Phibbs B.P., Marcus F.I. Perpetuation of the myth of the Q-wave versus the non-Q-wave myocardial infarction. J. Am. Coll. Cardiol. 2002;39:556–558. doi: 10.1016/S0735-1097(01)01754-5. PubMed DOI
Roes S.D., Borleffs C.J., van der Geest R.J., Westenberg J.J., Marsan N.A., Kaandorp T.A., Reiber J.H., Zeppenfeld K., Lamb H.J., de Roos A., et al. Infarct tissue heterogeneity assessed with contrast-enhanced MRI predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator. Circ. Cardiovasc. Imaging. 2009;2:183–190. doi: 10.1161/CIRCIMAGING.108.826529. PubMed DOI
Yokota H., Heidary S., Katikireddy C.K., Nguyen P., Pauly J.M., McConnell M.V., Yang P.C. Quantitative characterization of myocardial infarction by cardiovascular magnetic resonance predicts future cardiovascular events in patients with ischemic cardiomyopathy. J. Cardiovasc. Magn. Reson. 2008;10:10:1–10:17. doi: 10.1186/1532-429X-10-17. PubMed DOI PMC
Pahlm U.S., Chaitman B.R., Rautaharju P.M., Selvester R.H., Wagner G.S. Comparison of the various electrocardiographic scoring codes for estimating anatomically documented sizes of single and multiple infarcts of the left ventricle. Am. J. Cardiol. 1998;81:809–938. doi: 10.1016/S0002-9149(98)00016-2. PubMed DOI
Carey M.G., Luisi A.J., Baldwa S., Al-Zaiti S., Veneziano M.J., deKemp R.A., Canty J.M., Fallavollita J.A. The Selvester QRS Score is more accurate than Q waves and fragmented QRS complexes using the Mason-Likar configuration in estimating infarct volume in patients with ischemic cardiomyopathy. J. Electrocardiol. 2010;43:318–325. doi: 10.1016/j.jelectrocard.2010.02.011. PubMed DOI PMC
Fukuoka S., Kurita T., Dohi K., Masuda J., Seko T., Tanigawa T., Saito Y., Kakimoto H., Makino K., Ito M. Untangling the obesity paradox in patients with acute myocardial infarction after primary percutaneous coronary intervention (detail analysis by age) Int. J. Cardiol. 2019;289:12–18. doi: 10.1016/j.ijcard.2019.01.011. PubMed DOI
Mohammad M.A., Koul S., Thomsen Lønborg J., Nepper-Christensen L., Høfsten D.E., Ahtarovski K.A., Bang L.E., Helqvist S., Kyhl K., Køber L., et al. Usefulness of high sensitivity troponin T to predict long-term left ventricular dysfunction after ST-elevation myocardial infarction. Am. J. Cardiol. 2020;134:8–13. doi: 10.1016/j.amjcard.2020.07.060. PubMed DOI
Kala P., Novotny T., Andrsova I., Benesova K., Holicka M., Jarkovsky J., Hnatkova K., Koc L., Mikolaskova M., Novakova T., et al. Higher incidence of hypotension episodes in women during the sub-acute phase of ST elevation myocardial infarction and relationship to covariates. PLoS ONE. 2017;12:e0173699:1–e0173699:12. doi: 10.1371/journal.pone.0173699. PubMed DOI PMC
Lichtman J.H., Krumholz H.M., Wang Y., Radford M.J., Brass L.M. Risk and predictors of stroke after myocardial infarction among the elderly: Results from the cooperative cardiovascular project. Circulation. 2002;105:1082–1087. doi: 10.1161/hc0902.104708. PubMed DOI
Sabau M., Bungau S., Buhas C.L., Carp G., Daina L.G., Judea-Pusta C.T., Buhas B.A., Jurca C.M., Daina C.M., Tit D.M. Legal medicine implications in fibrinolytic therapy of acute ischemic stroke. BMC Med. Ethics. 2019;20:70. doi: 10.1186/s12910-019-0412-8. PubMed DOI PMC
White H.D., Reynolds H.R., Carvalho A.C., Pearte C.A., Liu L., Martin C.E., Knatterud G.L., Džavík V., Kruk M., Steg P.G., et al. Reinfarction after percutaneous coronary intervention or medical management using the universal definition in patients with total occlusion after myocardial infarction: Results from long-term follow-up of the Occluded Artery Trial (OAT) cohort. Am. Heart J. 2012;163:563–571. doi: 10.1016/j.ahj.2012.01.016. PubMed DOI PMC
Jenča D., Melenovský V., Stehlik J., Staněk V., Kettner J., Kautzner J., Adámková V., Wohlfahrt P. Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 2021;8:222–237. doi: 10.1002/ehf2.13144. PubMed DOI PMC