Study on Structure, Thermal Behavior and Viscoelastic Properties of Nanodiamond-Reinforced Poly (vinyl alcohol) Nanocomposites
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33925200
PubMed Central
PMC8124898
DOI
10.3390/polym13091426
PII: polym13091426
Knihovny.cz E-resources
- Keywords
- mechanical properties, morphology, nanocomposite, nanodiamond, poly (vinyl alcohol),
- Publication type
- Journal Article MeSH
In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.
See more in PubMed
Lin W., Zhu T., Li Q., Yi S., Li Y. Study of pervaporation for dehydration of caprolactam through PVA/nano silica composite membranes. Desalination. 2012;285:39–45. doi: 10.1016/j.desal.2011.09.028. DOI
Ceia T.-F., Silva A.-G., Ribeiro C.-S., Pinto J.-V., Casimiro M.-H., Ramos A.-M., Vital J. PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactor. Catal. T. 2014;236:98–107. doi: 10.1016/j.cattod.2014.02.052. DOI
Yang D., Li Y., Nie J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohyd. Polym. 2007;69:538–543. doi: 10.1016/j.carbpol.2007.01.008. DOI
Yadav R., Kandasubramanian B. Egg albumin PVA hybrid membranes for antibacterial application. Mat. Lett. 2013;110:130–133. doi: 10.1016/j.matlet.2013.07.109. DOI
Kumar A., Han S.-S. PVA-based hydrogels for tissue engineering: A review. Int. J. Pol. Mat. Pol. Biomat. 2017;66:159–182. doi: 10.1080/00914037.2016.1190930. DOI
Sheik S., Nairy R., Nagaraja G.-K., Prabhu A., Rekha P.-D., Prashantha K. Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications. Int. J. Bio. Macromol. 2018;116:45–53. doi: 10.1016/j.ijbiomac.2018.05.019. PubMed DOI
Iqbal M., Zafar H., Mahmood A., Niazi M.-B.-K., Aslam M.-W. Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications. Polymers. 2020;12:2112. doi: 10.3390/polym12092112. PubMed DOI PMC
Hassan C.-M., Peppas N.-A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/ thawing methods. Biopolymer. 2000;153:37–65.
Kobayashi M., Chang Y.-S., Oka M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials. 2005;26:3243–3248. doi: 10.1016/j.biomaterials.2004.08.028. PubMed DOI
Gu Z.-Q., Xiao J.-M., Zhang X.H. The development of artificial articular cartilage-PVA-hydrogel. Biomed. Mater. Eng. 1998;8:75–81. PubMed
Noguchi T., Yamamuro T., Oka M., Kumar P., Kotoura Y. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: Evaluation of biocompatibility. J. Appl. Biomater. 1991;2:101–107. doi: 10.1002/jab.770020205. PubMed DOI
Wan W.-K., Campbell G., Zhang Z.-F., Hui A.-J., Boughner D.-R. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. J. Biomed. Mater. Res. 2002;63:854–861. doi: 10.1002/jbm.10333. PubMed DOI
Peppas N.-A., Benner R.-E. Proposed method of intracordal injection and gelation of poly (vinyl alcohol) solution in vocal cords: Polymer considerations. Biomaterials. 1980;1:158–162. doi: 10.1016/0142-9612(80)90039-3. PubMed DOI
Paul W., Sharma C.-P. Polyacrylonitrile-reinforced poly (vinyl alcohol) membranes: Mechanical and dialysis performance. J. Appl. Pol. Sci. 1995;57:1447–1454. doi: 10.1002/app.1995.070571204. DOI
Bao Q.-B., Higham P.-A. Hydrogel intervertebral disc nucleus. 5,047,055A. US Patent. 1991 Sep 10;
Mallapragada S.K., McCarthy-Schroeder S. In: Poly(Vinyl Alcohol) as a Drug Delivery Carrier. Handbook of Pharmaceutical Controlled Release Technology. Wise D.-L., editor. CRC Press; New York, NY, USA: 2000. pp. 31–46.
Langer R. New methods of drug deliver. Science. 1990;249:1527–1533. doi: 10.1126/science.2218494. PubMed DOI
Korsmeyer R.-W., Gurny R., Doelker E., Buri P., Peppas N.-A. Mechanisms of solute release from porous hydrophilic polymers. Inter. J. Pharm. 1983;15:25–35. doi: 10.1016/0378-5173(83)90064-9. PubMed DOI
Wu Y., Wu C., Li Y., Xu T., Fu Y. PVA–silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent. Mem. Sci. 2010;350:322–332. doi: 10.1016/j.memsci.2010.01.007. DOI
Liu Z., Dong Y., Men H., Jiang M., Tong J., Zhou J. Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate. Carb. Polym. 2012;89:473–477. doi: 10.1016/j.carbpol.2012.02.076. PubMed DOI
Santos C., Silva C.-J., Büttel Z., Guimarães R., Pereira S.-B., Tamagnini P., Zille A. Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carb. Polym. 2014;99:584–592. doi: 10.1016/j.carbpol.2013.09.008. PubMed DOI
Li G., Zhao Y., Lv M., Shi Y., Cao D. Super hydrophilic poly (ethylene terephthalate)(PET)/poly (vinyl alcohol)(PVA) composite fibrous mats with improved mechanical properties prepared via electrospinning process. Coll. Surf. A. Physicochem. Eng. Asp. 2013;436:417–424. doi: 10.1016/j.colsurfa.2013.07.014. DOI
Na H., Chen P., Wong S.-C., Hague S., Li Q. Fabrication of PVDF/PVA microtubules by coaxial electrospinning. Polymer. 2012;53:2736–2743. doi: 10.1016/j.polymer.2012.04.021. DOI
Zhu M., Qian J., Zhao Q., An Q., Li J. Preparation method and pervaparation performance of polyelectrolyte complex/PVA blend membranes for dehydration of isopropanol. J. Mem. Sci. 2010;361:182–190. doi: 10.1016/j.memsci.2010.05.058. DOI
Irani M., Keshtkar A.-R., Moosavian M.-A. Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofiber prepared by sol–gel/electrospinning. Chem. Eng. J. 2012;200:192–201. doi: 10.1016/j.cej.2012.06.054. DOI
Zeng C., He Y., Li C., Xu Y. Synthesis of nanocrystalline LaMn0. 5Fe0. 5O3 powders via a PVA sol–gel route. Ceram. Inter. 2013;39:5765–5769. doi: 10.1016/j.ceramint.2012.12.094. DOI
Holloway J.-L., Lowman A.-M., VanLandingham M.-R., Palmese G.-R. Chemical grafting for improved interfacial shear strength in UHMWPE/PVA-hydrogel fiber-based composites used as soft fibrous tissue replacements. Comp. Sci. Tech. 2013;85:118–125. doi: 10.1016/j.compscitech.2013.06.007. DOI
Ajji Z., Ali A.-M. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting. J. Haz. Mat. 2010;173:71–74. doi: 10.1016/j.jhazmat.2009.08.049. PubMed DOI
Dodda J.-M., Bělský P., Chmelař J., Remiš T., Smolná K., Tomáš M., Kadlec J. Comparative study of PVA/SiO 2 and PVA/SiO2/glutaraldehyde (GA) nanocomposite membranes prepared by single-step solution casting method. J. Mater. Sci. 2015;50:6477–6490. doi: 10.1007/s10853-015-9206-7. DOI
Maitra U., Prasad K.-E., Ramamurty U. Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Comm. 2009;149:1693–1697. doi: 10.1016/j.ssc.2009.06.017. PubMed DOI PMC
Morimune S., Kotera M., Nishino T. Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules. 2011;44:4415–4421. doi: 10.1021/ma200176r. DOI
Karami P., Khasraghi S.-S., Hashemi M., Rabiei S., Shojaei A. Polymer/nanodiamond composites-a comprehensive review from synthesis and fabrication to properties and applications. Adv. Coll. Int. Sci. 2019;269:122–151. doi: 10.1016/j.cis.2019.04.006. PubMed DOI
Zhang Y., Choi J.-R., Park S.-J. Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Comp. Part A App. Sci. Manuf. 2017;101:227–236. doi: 10.1016/j.compositesa.2017.06.019. DOI
Zhang Y., Rhee K.-Y., Hui D., Park S.-J. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Comp. Part B Eng. 2018;143:19–27. doi: 10.1016/j.compositesb.2018.01.028. DOI
Huang P., Qi W., Yin X., Choi J., Chen X., Tian J., Xu J., Wu H., Luo J. Ultra-low friction of aC: H films enabled by lubrication of nanodiamond and graphene in ambient air. Carbon. 2019;154:203–210. doi: 10.1016/j.carbon.2019.08.010. DOI
Bedar A., Goswami N., Singha A.K., Kumar V., Debnath A.K., Sen D., Aswal V.K., Kumar S., Dutta D., Keshavkumar B., et al. Nanodiamonds as a state-of-the-art material for enhancing the gamma radiation resistance properties of polymeric membranes. Nan. Adv. 2020;2:1214–1227. doi: 10.1039/C9NA00372J. PubMed DOI PMC
Rehman A., Houshyar S., Wang X. Nanodiamond in composite: Biomedical application. J. Bio. Mat. Res. Part A. 2020;108:906–922. doi: 10.1002/jbm.a.36868. PubMed DOI
Mochalin V.-N. The properties and applications of nanodiamonds. Nat. Nanotech. 2012;7:11. doi: 10.1038/nnano.2011.209. PubMed DOI
Krueger A. New carbon materials: Biological applications of functionalized nanodiamond materials. Chemistry–A Eur. J. 2008;14:1382–1390. doi: 10.1002/chem.200700987. PubMed DOI
Shimkunas R.-A., Robinson E., Lam R., Lu S., Xu X., Zhang X.-Q., Huang H., Osawa E., Ho D. Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials. 2009;30:5720–5728. doi: 10.1016/j.biomaterials.2009.07.004. PubMed DOI
Purtov K.-V., Petunin A.-I., Burov A.-E., Puzy A.-P., Bondar V.-S. Nanodiamonds as carriers for address delivery of biologically active substances. Nano. Res. Lett. 2010;5:631–636. doi: 10.1007/s11671-010-9526-0. PubMed DOI PMC
Alhaddad A., Adam M.-P., Botsoa J., Dantelle G., Perruchas S., Gacoin T., Mansuy C., Lavielle S., Malvy C., Treussart F., et al. Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small. 2011;7:3087–3095. doi: 10.1002/smll.201101193. PubMed DOI
Chow E.K., Zhang X.-Q., Chen M., Lam R., Robinson E., Huang H., Schaffer D., Osawa E., Goga A., Ho D. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 2011;3:21–73. doi: 10.1126/scitranslmed.3001713. PubMed DOI
Su D., Maksimova N.-I., Mestl G., Kuznetsov V.-L., Keller V., Schlögl R., Keller N. Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon. Carbon. 2007;45:2145–2151. doi: 10.1016/j.carbon.2007.07.005. DOI
Huang H., Pierstorff E., Osawa E., Ho D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007;7:3305–3314. doi: 10.1021/nl071521o. PubMed DOI
Chen M., Zhang X.-Q., Man H.-B., Lam R., Chow E.-K., Ho D. Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J. Phys. Chem. Lett. 2010;1:3167–3171. doi: 10.1021/jz1013278. DOI
Liu K.-K., Zheng W.-W., Wang C.-C., Chiu Y.-C., Cheng C.-L., Lo Y.-S., Chen C., Chao J.-I. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010;21:315106. doi: 10.1088/0957-4484/21/31/315106. PubMed DOI
Zhang X.-Q., Lam R., Xu X., Chow E.-K., Kim H.-J., Ho D. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv. Mater. 2011;23:4770–4775. doi: 10.1002/adma.201102263. PubMed DOI
Slepetz B., Laszlo I., Gogotsi Y., Hyde-Volpe D., Kertesz M. Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory. Phys. Chem. Chem. Phys. 2010;12:14017–14022. doi: 10.1039/c0cp00523a. PubMed DOI
Neumann P., Beck J., Steiner M., Rempp F., Fedder H., Hemmer P.-R., Wrachtrup J., Jelezko F. Single-shot readout of a single nuclear spin. Science. 2010;329:542–544. doi: 10.1126/science.1189075. PubMed DOI
Balasubramanian G., Chan I.Y., Kolesov R., Al-Hmoud M., Tisler J., Shin C., Kim C., Wojcik A., Hemmer P.R., Krueger A., et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature. 2008;455:648–651. doi: 10.1038/nature07278. PubMed DOI
Bradac C., Gaebel T., Naidoo N., Sellars M.J., Twamley J., Brown L.J., Barnard A.S., Plakhotnik T., Zvyagin A.V., Rabeau J.R. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotech. 2010;5:345–349. doi: 10.1038/nnano.2010.56. PubMed DOI
Ivanov M.-G., Pavlyshko S.-V., Ivanov D.-M., Petrov I., Shenderova O. Synergistic compositions of colloidal nanodiamond as lubricant-additive. J. Vac. Sci. Tech. B. 2010;28:869–877. doi: 10.1116/1.3478245. DOI
Chou C.-C., Lee S.-H. Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy. Wear. 2010;269:757–762. doi: 10.1016/j.wear.2010.08.001. DOI
Matsumoto N., Joly-Pottuz L., Kinoshita H., Ohmae N. Application of onion-like carbon to micro and nanotribology. Diam. Relat. Mater. 2007;16:1227–1230. doi: 10.1016/j.diamond.2007.01.031. DOI
Kotov N.-A. Inorganic nanoparticles as protein mimics. Science. 2010;330:188–189. doi: 10.1126/science.1190094. PubMed DOI
Miao Y., Xu J., Shen Y., Chen L., Bian Y., Hu Y., Zhou W., Zheng F., Man N., Shen Y., et al. Nanoparticle as signaling protein mimic: Robust structural and functional modulation of CaMKII upon specific binding to fullerene C60 nanocrystals. ACS Nano. 2014;8:6131–6144. doi: 10.1021/nn501495a. PubMed DOI
Wuest K.-N., Lu H., Thomas D.-S., Goldmann A.-S., Stenzel M.-Z., Barner-Kowollik C. Fluorescent glyco single-chain nanoparticle-decorated nanodiamonds. ACS M. Lett. 2017;6:1168–1174. doi: 10.1021/acsmacrolett.7b00659. PubMed DOI
Zhang Q., Mochalin V.N., Neitzel I., Knoke I.Y., Han J., Klug C.A., Zhou J.G., Lelkes P.I., Gogotsi Y. Fluorescent PLLA–nanodiamond composites for bone tissue engineering. Biomaterials. 2011;32:87–94. doi: 10.1016/j.biomaterials.2010.08.090. PubMed DOI
Thalhammer A., Edgington R.-J., Cingolani L.-A., Schoepfer R., Jackman R.-B. The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials. 2010;31:2097–2104. doi: 10.1016/j.biomaterials.2009.11.109. PubMed DOI
Kovářík T., Bělský P., Rieger D., Ilavsky J., Jandová V., Maas M., Šutta P., Pola M., Medlín R. Particle size analysis and characterization of nanodiamond dispersions in water and dimethylformamide by various scattering and diffraction methods. J. Nanopart. Res. 2020;22:34.
Ilavsky J., Jemian P.-R. Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Cryst. 2009;42:347–353. doi: 10.1107/S0021889809002222. DOI
Beaucage G. Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Cryst. 1995;28:717–728. doi: 10.1107/S0021889895005292. DOI
Martinelli A., Matic A., Jacobsson P., Börjesson L., Navarra M.-A., Fernicola A., Scrosati B. Structural analysis of PVA-based proton conducting membranes. Sol. State. Ion. 2006;177:2431–2435. doi: 10.1016/j.ssi.2006.01.035. DOI
Yang C.-C., Li Y.-J., Liou T.-H. Preparation of novel poly (vinyl alcohol)/SiO2 nanocomposite membranes by a sol–gel process and their application on alkaline DMFCs. Desalination. 2011;276:366–372. doi: 10.1016/j.desal.2011.03.079. DOI
Yang C.-C., Lin C.-T., Chiu S.-J. Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application. Desalination. 2008;233:137–146. doi: 10.1016/j.desal.2007.09.036. DOI
Hema M., Selvasekarapandian S., Hirankumar G., Sakunthala A., Arunkumar D., Nithya H. Laser Raman and ac impedance spectroscopic studies of PVA: NH4NO3 polymer electrolyte. Spect. Act. A. 2010;75:474–478. doi: 10.1016/j.saa.2009.11.012. PubMed DOI
Mona J., Tu J.-S., Kang T.-Y., Tsai C.-Y., Perevedentseva E., Cheng C.-L. Surface modification of nanodiamond: Photoluminescence and Raman studies. Diam. Relat. Mater. 2012;24:134–138. doi: 10.1016/j.diamond.2011.12.027. DOI
Korepanov V.-I., Hamaguchi H.-O., Osawa E., Ermolenkov V., Lednev I.-K., Etzold B.-J., Chang H.-C. Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon. 2017;121:322–329. doi: 10.1016/j.carbon.2017.06.012. DOI
Assender H.-E., Windle A.-H. Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer. 1998;39:4295–4302. doi: 10.1016/S0032-3861(97)10296-8. DOI
Guirguis W., Moselhey M.-T. Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Natur. Sci. 2012;4:57–67. doi: 10.4236/ns.2012.41009. DOI
Tomchuk O.-V., Volkov D.-S., Bulavin L.-A., Rogachev A.-V., Proskurnin M.-A., Korobov M.-V., Avdeev M.-V. Structural characteristics of aqueous dispersions of detonation nanodiamond and their aggregate fractions as revealed by small-angle neutron scattering. J. Phys. Chem. C. 2014;119:794–802. doi: 10.1021/jp510151b. DOI
Mandelbrot B.-B. Fractals: Form, chance, and dimension. W-H Freeman and Company; San Francisco, CA, USA: 1977.
Schaefer D.-W., Martin J.-E., Wiltzius P., Cannell D.-S. Fractal Geometry of Colloidal Aggregates. Phys. Rev. Lett. 1984;52:2371–2374. doi: 10.1103/PhysRevLett.52.2371. DOI
Rai D.-K., Beaucage G., Vogt K., Ilavsky J., Kammler H.-K. In situ study of aggregate topology during growth of pyrolytic silica. J. Aerosol Sci. 2018;118:34–44. doi: 10.1016/j.jaerosci.2018.01.006. DOI
Avdeev M.-V., Rozhkova N.-N., Aksenov V.-L., Garamus V.-M., Willumeit R., Osawa E. Aggregate Structure in Concentrated Liquid Dispersions of Ultrananocrystalline Diamond by Small-Angle Neutron Scattering. J. Phys. Chem. C. 2009;113:9473–9479. doi: 10.1021/jp900424p. DOI
Tsuchiya Y., Sumi K. Thermal decomposition products of poly (vinyl alcohol) J. Polym. Sci. Part A. 1969;7:3151–3158. doi: 10.1002/pol.1969.150071111. DOI
Ballistreri A., Foti S., Montaudo G., Scamporrino E. Evolution of aromatic compounds in the thermal decomposition of vinyl polymers. J. Polym. Sci. Part A. 1980;18:1147–1153. doi: 10.1002/pol.1980.170180401. DOI
Holland B.-J., Hay J.-N. The thermal degradation of poly (vinyl alcohol) Polymer. 2001;42:6775–6783. doi: 10.1016/S0032-3861(01)00166-5. DOI
Tutgun M.-S., Sinirlioglu D., Celik S.-U., Bozkurt A. Investigation of nanocomposite membranes based on crosslinked poly (vinyl alcohol)–sulfosuccinic acid ester and hexagonal boron nitride. J. Polym. Res. 2015;22:47. doi: 10.1007/s10965-015-0678-6. DOI
Li L., Xu X., Liu L., Song P., Cao Q., Xu Z., Fang Z., Wang H. Water governs the mechanical properties of poly (vinyl alcoho) Polymer. 2021;213:123330. doi: 10.1016/j.polymer.2020.123330. DOI
Romanzini D., Lavoratti A., Ornaghi H.-L., Jr., Amico S.-C., Zattera A.-J. Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater. Design. 2013;47:9–15. doi: 10.1016/j.matdes.2012.12.029. DOI
Jonoobi M., Harun J., Mathew A.-P., Oksman K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Tech. 2010;70:1742–1747. doi: 10.1016/j.compscitech.2010.07.005. DOI