• This record comes from PubMed

Study on Structure, Thermal Behavior and Viscoelastic Properties of Nanodiamond-Reinforced Poly (vinyl alcohol) Nanocomposites

. 2021 Apr 28 ; 13 (9) : . [epub] 20210428

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

In this work, advanced polymer nanocomposites comprising of polyvinyl alcohol (PVA) and nanodiamonds (NDs) were developed using a single-step solution-casting method. The properties of the prepared PVA/NDs nanocomposites were investigated using Raman spectroscopy, small- and wide-angle X-ray scattering (SAXS/WAXS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was revealed that the tensile strength improved dramatically with increasing ND content in the PVA matrix, suggesting a strong interaction between the NDs and the PVA. SEM, TEM, and SAXS showed that NDs were present in the form of agglomerates with an average size of ~60 nm with primary particles of diameter ~5 nm. These results showed that NDs could act as a good nanofiller for PVA in terms of improving its stability and mechanical properties.

See more in PubMed

Lin W., Zhu T., Li Q., Yi S., Li Y. Study of pervaporation for dehydration of caprolactam through PVA/nano silica composite membranes. Desalination. 2012;285:39–45. doi: 10.1016/j.desal.2011.09.028. DOI

Ceia T.-F., Silva A.-G., Ribeiro C.-S., Pinto J.-V., Casimiro M.-H., Ramos A.-M., Vital J. PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactor. Catal. T. 2014;236:98–107. doi: 10.1016/j.cattod.2014.02.052. DOI

Yang D., Li Y., Nie J. Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohyd. Polym. 2007;69:538–543. doi: 10.1016/j.carbpol.2007.01.008. DOI

Yadav R., Kandasubramanian B. Egg albumin PVA hybrid membranes for antibacterial application. Mat. Lett. 2013;110:130–133. doi: 10.1016/j.matlet.2013.07.109. DOI

Kumar A., Han S.-S. PVA-based hydrogels for tissue engineering: A review. Int. J. Pol. Mat. Pol. Biomat. 2017;66:159–182. doi: 10.1080/00914037.2016.1190930. DOI

Sheik S., Nairy R., Nagaraja G.-K., Prabhu A., Rekha P.-D., Prashantha K. Study on the morphological and biocompatible properties of chitosan grafted silk fibre reinforced PVA films for tissue engineering applications. Int. J. Bio. Macromol. 2018;116:45–53. doi: 10.1016/j.ijbiomac.2018.05.019. PubMed DOI

Iqbal M., Zafar H., Mahmood A., Niazi M.-B.-K., Aslam M.-W. Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications. Polymers. 2020;12:2112. doi: 10.3390/polym12092112. PubMed DOI PMC

Hassan C.-M., Peppas N.-A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/ thawing methods. Biopolymer. 2000;153:37–65.

Kobayashi M., Chang Y.-S., Oka M. A two year in vivo study of polyvinyl alcohol-hydrogel (PVA-H) artificial meniscus. Biomaterials. 2005;26:3243–3248. doi: 10.1016/j.biomaterials.2004.08.028. PubMed DOI

Gu Z.-Q., Xiao J.-M., Zhang X.H. The development of artificial articular cartilage-PVA-hydrogel. Biomed. Mater. Eng. 1998;8:75–81. PubMed

Noguchi T., Yamamuro T., Oka M., Kumar P., Kotoura Y. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: Evaluation of biocompatibility. J. Appl. Biomater. 1991;2:101–107. doi: 10.1002/jab.770020205. PubMed DOI

Wan W.-K., Campbell G., Zhang Z.-F., Hui A.-J., Boughner D.-R. Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent. J. Biomed. Mater. Res. 2002;63:854–861. doi: 10.1002/jbm.10333. PubMed DOI

Peppas N.-A., Benner R.-E. Proposed method of intracordal injection and gelation of poly (vinyl alcohol) solution in vocal cords: Polymer considerations. Biomaterials. 1980;1:158–162. doi: 10.1016/0142-9612(80)90039-3. PubMed DOI

Paul W., Sharma C.-P. Polyacrylonitrile-reinforced poly (vinyl alcohol) membranes: Mechanical and dialysis performance. J. Appl. Pol. Sci. 1995;57:1447–1454. doi: 10.1002/app.1995.070571204. DOI

Bao Q.-B., Higham P.-A. Hydrogel intervertebral disc nucleus. 5,047,055A. US Patent. 1991 Sep 10;

Mallapragada S.K., McCarthy-Schroeder S. In: Poly(Vinyl Alcohol) as a Drug Delivery Carrier. Handbook of Pharmaceutical Controlled Release Technology. Wise D.-L., editor. CRC Press; New York, NY, USA: 2000. pp. 31–46.

Langer R. New methods of drug deliver. Science. 1990;249:1527–1533. doi: 10.1126/science.2218494. PubMed DOI

Korsmeyer R.-W., Gurny R., Doelker E., Buri P., Peppas N.-A. Mechanisms of solute release from porous hydrophilic polymers. Inter. J. Pharm. 1983;15:25–35. doi: 10.1016/0378-5173(83)90064-9. PubMed DOI

Wu Y., Wu C., Li Y., Xu T., Fu Y. PVA–silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent. Mem. Sci. 2010;350:322–332. doi: 10.1016/j.memsci.2010.01.007. DOI

Liu Z., Dong Y., Men H., Jiang M., Tong J., Zhou J. Post-crosslinking modification of thermoplastic starch/PVA blend films by using sodium hexametaphosphate. Carb. Polym. 2012;89:473–477. doi: 10.1016/j.carbpol.2012.02.076. PubMed DOI

Santos C., Silva C.-J., Büttel Z., Guimarães R., Pereira S.-B., Tamagnini P., Zille A. Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carb. Polym. 2014;99:584–592. doi: 10.1016/j.carbpol.2013.09.008. PubMed DOI

Li G., Zhao Y., Lv M., Shi Y., Cao D. Super hydrophilic poly (ethylene terephthalate)(PET)/poly (vinyl alcohol)(PVA) composite fibrous mats with improved mechanical properties prepared via electrospinning process. Coll. Surf. A. Physicochem. Eng. Asp. 2013;436:417–424. doi: 10.1016/j.colsurfa.2013.07.014. DOI

Na H., Chen P., Wong S.-C., Hague S., Li Q. Fabrication of PVDF/PVA microtubules by coaxial electrospinning. Polymer. 2012;53:2736–2743. doi: 10.1016/j.polymer.2012.04.021. DOI

Zhu M., Qian J., Zhao Q., An Q., Li J. Preparation method and pervaparation performance of polyelectrolyte complex/PVA blend membranes for dehydration of isopropanol. J. Mem. Sci. 2010;361:182–190. doi: 10.1016/j.memsci.2010.05.058. DOI

Irani M., Keshtkar A.-R., Moosavian M.-A. Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofiber prepared by sol–gel/electrospinning. Chem. Eng. J. 2012;200:192–201. doi: 10.1016/j.cej.2012.06.054. DOI

Zeng C., He Y., Li C., Xu Y. Synthesis of nanocrystalline LaMn0. 5Fe0. 5O3 powders via a PVA sol–gel route. Ceram. Inter. 2013;39:5765–5769. doi: 10.1016/j.ceramint.2012.12.094. DOI

Holloway J.-L., Lowman A.-M., VanLandingham M.-R., Palmese G.-R. Chemical grafting for improved interfacial shear strength in UHMWPE/PVA-hydrogel fiber-based composites used as soft fibrous tissue replacements. Comp. Sci. Tech. 2013;85:118–125. doi: 10.1016/j.compscitech.2013.06.007. DOI

Ajji Z., Ali A.-M. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting. J. Haz. Mat. 2010;173:71–74. doi: 10.1016/j.jhazmat.2009.08.049. PubMed DOI

Dodda J.-M., Bělský P., Chmelař J., Remiš T., Smolná K., Tomáš M., Kadlec J. Comparative study of PVA/SiO 2 and PVA/SiO2/glutaraldehyde (GA) nanocomposite membranes prepared by single-step solution casting method. J. Mater. Sci. 2015;50:6477–6490. doi: 10.1007/s10853-015-9206-7. DOI

Maitra U., Prasad K.-E., Ramamurty U. Mechanical properties of nanodiamond-reinforced polymer-matrix composites. Solid State Comm. 2009;149:1693–1697. doi: 10.1016/j.ssc.2009.06.017. PubMed DOI PMC

Morimune S., Kotera M., Nishino T. Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules. 2011;44:4415–4421. doi: 10.1021/ma200176r. DOI

Karami P., Khasraghi S.-S., Hashemi M., Rabiei S., Shojaei A. Polymer/nanodiamond composites-a comprehensive review from synthesis and fabrication to properties and applications. Adv. Coll. Int. Sci. 2019;269:122–151. doi: 10.1016/j.cis.2019.04.006. PubMed DOI

Zhang Y., Choi J.-R., Park S.-J. Thermal conductivity and thermo-physical properties of nanodiamond-attached exfoliated hexagonal boron nitride/epoxy nanocomposites for microelectronics. Comp. Part A App. Sci. Manuf. 2017;101:227–236. doi: 10.1016/j.compositesa.2017.06.019. DOI

Zhang Y., Rhee K.-Y., Hui D., Park S.-J. A critical review of nanodiamond based nanocomposites: Synthesis, properties and applications. Comp. Part B Eng. 2018;143:19–27. doi: 10.1016/j.compositesb.2018.01.028. DOI

Huang P., Qi W., Yin X., Choi J., Chen X., Tian J., Xu J., Wu H., Luo J. Ultra-low friction of aC: H films enabled by lubrication of nanodiamond and graphene in ambient air. Carbon. 2019;154:203–210. doi: 10.1016/j.carbon.2019.08.010. DOI

Bedar A., Goswami N., Singha A.K., Kumar V., Debnath A.K., Sen D., Aswal V.K., Kumar S., Dutta D., Keshavkumar B., et al. Nanodiamonds as a state-of-the-art material for enhancing the gamma radiation resistance properties of polymeric membranes. Nan. Adv. 2020;2:1214–1227. doi: 10.1039/C9NA00372J. PubMed DOI PMC

Rehman A., Houshyar S., Wang X. Nanodiamond in composite: Biomedical application. J. Bio. Mat. Res. Part A. 2020;108:906–922. doi: 10.1002/jbm.a.36868. PubMed DOI

Mochalin V.-N. The properties and applications of nanodiamonds. Nat. Nanotech. 2012;7:11. doi: 10.1038/nnano.2011.209. PubMed DOI

Krueger A. New carbon materials: Biological applications of functionalized nanodiamond materials. Chemistry–A Eur. J. 2008;14:1382–1390. doi: 10.1002/chem.200700987. PubMed DOI

Shimkunas R.-A., Robinson E., Lam R., Lu S., Xu X., Zhang X.-Q., Huang H., Osawa E., Ho D. Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials. 2009;30:5720–5728. doi: 10.1016/j.biomaterials.2009.07.004. PubMed DOI

Purtov K.-V., Petunin A.-I., Burov A.-E., Puzy A.-P., Bondar V.-S. Nanodiamonds as carriers for address delivery of biologically active substances. Nano. Res. Lett. 2010;5:631–636. doi: 10.1007/s11671-010-9526-0. PubMed DOI PMC

Alhaddad A., Adam M.-P., Botsoa J., Dantelle G., Perruchas S., Gacoin T., Mansuy C., Lavielle S., Malvy C., Treussart F., et al. Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small. 2011;7:3087–3095. doi: 10.1002/smll.201101193. PubMed DOI

Chow E.K., Zhang X.-Q., Chen M., Lam R., Robinson E., Huang H., Schaffer D., Osawa E., Goga A., Ho D. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 2011;3:21–73. doi: 10.1126/scitranslmed.3001713. PubMed DOI

Su D., Maksimova N.-I., Mestl G., Kuznetsov V.-L., Keller V., Schlögl R., Keller N. Oxidative dehydrogenation of ethylbenzene to styrene over ultra-dispersed diamond and onion-like carbon. Carbon. 2007;45:2145–2151. doi: 10.1016/j.carbon.2007.07.005. DOI

Huang H., Pierstorff E., Osawa E., Ho D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett. 2007;7:3305–3314. doi: 10.1021/nl071521o. PubMed DOI

Chen M., Zhang X.-Q., Man H.-B., Lam R., Chow E.-K., Ho D. Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J. Phys. Chem. Lett. 2010;1:3167–3171. doi: 10.1021/jz1013278. DOI

Liu K.-K., Zheng W.-W., Wang C.-C., Chiu Y.-C., Cheng C.-L., Lo Y.-S., Chen C., Chao J.-I. Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology. 2010;21:315106. doi: 10.1088/0957-4484/21/31/315106. PubMed DOI

Zhang X.-Q., Lam R., Xu X., Chow E.-K., Kim H.-J., Ho D. Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv. Mater. 2011;23:4770–4775. doi: 10.1002/adma.201102263. PubMed DOI

Slepetz B., Laszlo I., Gogotsi Y., Hyde-Volpe D., Kertesz M. Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory. Phys. Chem. Chem. Phys. 2010;12:14017–14022. doi: 10.1039/c0cp00523a. PubMed DOI

Neumann P., Beck J., Steiner M., Rempp F., Fedder H., Hemmer P.-R., Wrachtrup J., Jelezko F. Single-shot readout of a single nuclear spin. Science. 2010;329:542–544. doi: 10.1126/science.1189075. PubMed DOI

Balasubramanian G., Chan I.Y., Kolesov R., Al-Hmoud M., Tisler J., Shin C., Kim C., Wojcik A., Hemmer P.R., Krueger A., et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature. 2008;455:648–651. doi: 10.1038/nature07278. PubMed DOI

Bradac C., Gaebel T., Naidoo N., Sellars M.J., Twamley J., Brown L.J., Barnard A.S., Plakhotnik T., Zvyagin A.V., Rabeau J.R. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat. Nanotech. 2010;5:345–349. doi: 10.1038/nnano.2010.56. PubMed DOI

Ivanov M.-G., Pavlyshko S.-V., Ivanov D.-M., Petrov I., Shenderova O. Synergistic compositions of colloidal nanodiamond as lubricant-additive. J. Vac. Sci. Tech. B. 2010;28:869–877. doi: 10.1116/1.3478245. DOI

Chou C.-C., Lee S.-H. Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminum alloy. Wear. 2010;269:757–762. doi: 10.1016/j.wear.2010.08.001. DOI

Matsumoto N., Joly-Pottuz L., Kinoshita H., Ohmae N. Application of onion-like carbon to micro and nanotribology. Diam. Relat. Mater. 2007;16:1227–1230. doi: 10.1016/j.diamond.2007.01.031. DOI

Kotov N.-A. Inorganic nanoparticles as protein mimics. Science. 2010;330:188–189. doi: 10.1126/science.1190094. PubMed DOI

Miao Y., Xu J., Shen Y., Chen L., Bian Y., Hu Y., Zhou W., Zheng F., Man N., Shen Y., et al. Nanoparticle as signaling protein mimic: Robust structural and functional modulation of CaMKII upon specific binding to fullerene C60 nanocrystals. ACS Nano. 2014;8:6131–6144. doi: 10.1021/nn501495a. PubMed DOI

Wuest K.-N., Lu H., Thomas D.-S., Goldmann A.-S., Stenzel M.-Z., Barner-Kowollik C. Fluorescent glyco single-chain nanoparticle-decorated nanodiamonds. ACS M. Lett. 2017;6:1168–1174. doi: 10.1021/acsmacrolett.7b00659. PubMed DOI

Zhang Q., Mochalin V.N., Neitzel I., Knoke I.Y., Han J., Klug C.A., Zhou J.G., Lelkes P.I., Gogotsi Y. Fluorescent PLLA–nanodiamond composites for bone tissue engineering. Biomaterials. 2011;32:87–94. doi: 10.1016/j.biomaterials.2010.08.090. PubMed DOI

Thalhammer A., Edgington R.-J., Cingolani L.-A., Schoepfer R., Jackman R.-B. The use of nanodiamond monolayer coatings to promote the formation of functional neuronal networks. Biomaterials. 2010;31:2097–2104. doi: 10.1016/j.biomaterials.2009.11.109. PubMed DOI

Kovářík T., Bělský P., Rieger D., Ilavsky J., Jandová V., Maas M., Šutta P., Pola M., Medlín R. Particle size analysis and characterization of nanodiamond dispersions in water and dimethylformamide by various scattering and diffraction methods. J. Nanopart. Res. 2020;22:34.

Ilavsky J., Jemian P.-R. Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Cryst. 2009;42:347–353. doi: 10.1107/S0021889809002222. DOI

Beaucage G. Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Cryst. 1995;28:717–728. doi: 10.1107/S0021889895005292. DOI

Martinelli A., Matic A., Jacobsson P., Börjesson L., Navarra M.-A., Fernicola A., Scrosati B. Structural analysis of PVA-based proton conducting membranes. Sol. State. Ion. 2006;177:2431–2435. doi: 10.1016/j.ssi.2006.01.035. DOI

Yang C.-C., Li Y.-J., Liou T.-H. Preparation of novel poly (vinyl alcohol)/SiO2 nanocomposite membranes by a sol–gel process and their application on alkaline DMFCs. Desalination. 2011;276:366–372. doi: 10.1016/j.desal.2011.03.079. DOI

Yang C.-C., Lin C.-T., Chiu S.-J. Preparation of the PVA/HAP composite polymer membrane for alkaline DMFC application. Desalination. 2008;233:137–146. doi: 10.1016/j.desal.2007.09.036. DOI

Hema M., Selvasekarapandian S., Hirankumar G., Sakunthala A., Arunkumar D., Nithya H. Laser Raman and ac impedance spectroscopic studies of PVA: NH4NO3 polymer electrolyte. Spect. Act. A. 2010;75:474–478. doi: 10.1016/j.saa.2009.11.012. PubMed DOI

Mona J., Tu J.-S., Kang T.-Y., Tsai C.-Y., Perevedentseva E., Cheng C.-L. Surface modification of nanodiamond: Photoluminescence and Raman studies. Diam. Relat. Mater. 2012;24:134–138. doi: 10.1016/j.diamond.2011.12.027. DOI

Korepanov V.-I., Hamaguchi H.-O., Osawa E., Ermolenkov V., Lednev I.-K., Etzold B.-J., Chang H.-C. Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon. 2017;121:322–329. doi: 10.1016/j.carbon.2017.06.012. DOI

Assender H.-E., Windle A.-H. Crystallinity in poly(vinyl alcohol). 1. An X-ray diffraction study of atactic PVOH. Polymer. 1998;39:4295–4302. doi: 10.1016/S0032-3861(97)10296-8. DOI

Guirguis W., Moselhey M.-T. Thermal and structural studies of poly(vinyl alcohol) and hydroxypropyl cellulose blends. Natur. Sci. 2012;4:57–67. doi: 10.4236/ns.2012.41009. DOI

Tomchuk O.-V., Volkov D.-S., Bulavin L.-A., Rogachev A.-V., Proskurnin M.-A., Korobov M.-V., Avdeev M.-V. Structural characteristics of aqueous dispersions of detonation nanodiamond and their aggregate fractions as revealed by small-angle neutron scattering. J. Phys. Chem. C. 2014;119:794–802. doi: 10.1021/jp510151b. DOI

Mandelbrot B.-B. Fractals: Form, chance, and dimension. W-H Freeman and Company; San Francisco, CA, USA: 1977.

Schaefer D.-W., Martin J.-E., Wiltzius P., Cannell D.-S. Fractal Geometry of Colloidal Aggregates. Phys. Rev. Lett. 1984;52:2371–2374. doi: 10.1103/PhysRevLett.52.2371. DOI

Rai D.-K., Beaucage G., Vogt K., Ilavsky J., Kammler H.-K. In situ study of aggregate topology during growth of pyrolytic silica. J. Aerosol Sci. 2018;118:34–44. doi: 10.1016/j.jaerosci.2018.01.006. DOI

Avdeev M.-V., Rozhkova N.-N., Aksenov V.-L., Garamus V.-M., Willumeit R., Osawa E. Aggregate Structure in Concentrated Liquid Dispersions of Ultrananocrystalline Diamond by Small-Angle Neutron Scattering. J. Phys. Chem. C. 2009;113:9473–9479. doi: 10.1021/jp900424p. DOI

Tsuchiya Y., Sumi K. Thermal decomposition products of poly (vinyl alcohol) J. Polym. Sci. Part A. 1969;7:3151–3158. doi: 10.1002/pol.1969.150071111. DOI

Ballistreri A., Foti S., Montaudo G., Scamporrino E. Evolution of aromatic compounds in the thermal decomposition of vinyl polymers. J. Polym. Sci. Part A. 1980;18:1147–1153. doi: 10.1002/pol.1980.170180401. DOI

Holland B.-J., Hay J.-N. The thermal degradation of poly (vinyl alcohol) Polymer. 2001;42:6775–6783. doi: 10.1016/S0032-3861(01)00166-5. DOI

Tutgun M.-S., Sinirlioglu D., Celik S.-U., Bozkurt A. Investigation of nanocomposite membranes based on crosslinked poly (vinyl alcohol)–sulfosuccinic acid ester and hexagonal boron nitride. J. Polym. Res. 2015;22:47. doi: 10.1007/s10965-015-0678-6. DOI

Li L., Xu X., Liu L., Song P., Cao Q., Xu Z., Fang Z., Wang H. Water governs the mechanical properties of poly (vinyl alcoho) Polymer. 2021;213:123330. doi: 10.1016/j.polymer.2020.123330. DOI

Romanzini D., Lavoratti A., Ornaghi H.-L., Jr., Amico S.-C., Zattera A.-J. Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater. Design. 2013;47:9–15. doi: 10.1016/j.matdes.2012.12.029. DOI

Jonoobi M., Harun J., Mathew A.-P., Oksman K. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Tech. 2010;70:1742–1747. doi: 10.1016/j.compscitech.2010.07.005. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...