Loss-of-Function Mutations of BCOR Are an Independent Marker of Adverse Outcomes in Intensively Treated Patients with Acute Myeloid Leukemia
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
33926021
PubMed Central
PMC8123716
DOI
10.3390/cancers13092095
PII: cancers13092095
Knihovny.cz E-resources
- Keywords
- BCOR, BCORL1, acute myeloid leukemia, loss-of-function, risk stratification, survival,
- Publication type
- Journal Article MeSH
Acute myeloid leukemia (AML) is characterized by recurrent genetic events. The BCL6 corepressor (BCOR) and its homolog, the BCL6 corepressor-like 1 (BCORL1), have been reported to be rare but recurrent mutations in AML. Previously, smaller studies have reported conflicting results regarding impacts on outcomes. Here, we retrospectively analyzed a large cohort of 1529 patients with newly diagnosed and intensively treated AML. BCOR and BCORL1 mutations were found in 71 (4.6%) and 53 patients (3.5%), respectively. Frequently co-mutated genes were DNTM3A, TET2 and RUNX1. Mutated BCORL1 and loss-of-function mutations of BCOR were significantly more common in the ELN2017 intermediate-risk group. Patients harboring loss-of-function mutations of BCOR had a significantly reduced median event-free survival (HR = 1.464 (95%-Confidence Interval (CI): 1.005-2.134), p = 0.047), relapse-free survival (HR = 1.904 (95%-CI: 1.163-3.117), p = 0.01), and trend for reduced overall survival (HR = 1.495 (95%-CI: 0.990-2.258), p = 0.056) in multivariable analysis. Our study establishes a novel role for loss-of-function mutations of BCOR regarding risk stratification in AML, which may influence treatment allocation.
DKMS Clinical Trials Unit 01309 Dresden Germany
Hämatologie und Onkologie Charité Universitätsmedizin 10117 Berlin Germany
Innere Medizin 3 HSK Wiesbaden 65199 Wiesbaden Germany
Klinik für Hämatologie Onkologie Immunologie Philipps Universität 35043 Marburg Germany
Klinik für Hämatologie Universitätsklinikum Essen 45147 Essen Germany
Klinik für Innere Medizin 2 Universitätsklinikum Jena 07740 Jena Germany
Klinik für Innere Medizin 5 Klinikum Nürnberg Nord 90419 Nürnberg Germany
Medizinische Klinik 2 St Bernward Krankenhaus 31134 Hildesheim Germany
Medizinische Klinik 2 Universitätsklinikum Frankfurt 60590 Frankfurt am Main Germany
Medizinische Klinik 3 Klinikum Chemnitz 09116 Chemnitz Germany
Medizinische Klinik 3 St Marien Krankenhaus Siegen 57072 Siegen Germany
Medizinische Klinik 5 Universitätsklinikum Erlangen 91054 Erlangen Germany
Medizinische Klinik A Universitätsklinikum Münster 48149 Münster Germany
Medizinische Klinik und Poliklinik 1 Universitätsklinikum Carl Gustav Carus 01307 Dresden Germany
Medizinische Klinik und Poliklinik 2 Universitätsklinikum Würzburg 97080 Würzburg Germany
See more in PubMed
Papaemmanuil E., Gerstung M., Bullinger L., Gaidzik V.I., Paschka P., Roberts N.D., Potter N.E., Heuser M., Thol F., Bolli N., et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016;374:2209–2221. doi: 10.1056/NEJMoa1516192. PubMed DOI PMC
Shumilov E., Flach J., Kohlmann A., Banz Y., Bonadies N., Fiedler M., Pabst T., Bacher U. Current status and trends in the diagnostics of AML and MDS. Blood Rev. 2018;32:508–519. doi: 10.1016/j.blre.2018.04.008. PubMed DOI
Bullinger L., Döhner K., Döhner H. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. J. Clin. Oncol. 2017;35:934–946. doi: 10.1200/JCO.2016.71.2208. PubMed DOI
Döhner H., Estey E., Grimwade D., Amadori S., Appelbaum F.R., Büchner T., Dombret H., Ebert B.L., Fenaux P., Larson R.A., et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–447. doi: 10.1182/blood-2016-08-733196. PubMed DOI PMC
Huynh K.D., Fischle W., Verdin E., Bardwell V.J. BCoR, a novel corepressor involved in BCL-6 repression. Genome Res. 2000;14:1810–1823. PubMed PMC
Li M., Collins R., Jiao Y., Ouillette P., Bixby D., Erba H., Vogelstein B., Kinzler K.W., Papadopoulos N., Malek S.N. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia. Blood. 2011;118:5914–5917. doi: 10.1182/blood-2011-05-356204. PubMed DOI PMC
Astolfi A., Fiore M., Melchionda F., Indio V., Bertuccio S.N., Pession A. BCOR involvement in cancer. Epigenomics. 2019;11:835–855. doi: 10.2217/epi-2018-0195. PubMed DOI PMC
Sparmann A., Van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer. 2006;6:846–856. doi: 10.1038/nrc1991. PubMed DOI
Simon J.A., Kingston R.E. Occupying Chromatin: Polycomb Mechanisms for Getting to Genomic Targets, Stopping Transcriptional Traffic, and Staying Put. Mol. Cell. 2013;49:808–824. doi: 10.1016/j.molcel.2013.02.013. PubMed DOI PMC
Cao Q., Gearhart M.D., Gery S., Shojaee S., Yang H., Sun H., Lin D.-C., Bai J.-W., Mead M., Zhao Z., et al. BCOR regulates myeloid cell proliferation and differentiation. Leukemia. 2016;30:1155–1165. doi: 10.1038/leu.2016.2. PubMed DOI PMC
Gearhart M.D., Corcoran C.M., Wamstad J.A., Bardwell V.J. Polycomb Group and SCF Ubiquitin Ligases Are Found in a Novel BCOR Complex That Is Recruited to BCL6 Targets. Mol. Cell. Biol. 2006;26:6880–6889. doi: 10.1128/MCB.00630-06. PubMed DOI PMC
Wang Z., Gearhart M.D., Lee Y.-W., Kumar I., Ramazanov B., Zhang Y., Hernandez C., Lu A.Y., Neuenkirchen N., Deng J., et al. A Non-canonical BCOR-PRC1.1 Complex Represses Differentiation Programs in Human ESCs. Cell Stem Cell. 2018;22:235–251.e9. doi: 10.1016/j.stem.2017.12.002. PubMed DOI PMC
Wamstad J.A., Corcoran C.M., Keating A.M., Bardwell V.J. Role of the Transcriptional Corepressor Bcor in Embryonic Stem Cell Differentiation and Early Embryonic Development. PLoS ONE. 2008;3:e2814. doi: 10.1371/journal.pone.0002814. PubMed DOI PMC
Ng D., Thakker N., Corcoran C.M., Donnai D., Perveen R., Schneider A., Hadley D.W., Tifft C.J., Zhang L., Wilkie A.O.M., et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat. Genet. 2004;36:411–416. doi: 10.1038/ng1321. PubMed DOI
Zhang J., Benavente C.A., McEvoy J., Flores-Otero J., Ding L., Chen X., Ulyanov A., Wu G., Wilson M.W., Wang J., et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nat. Cell Biol. 2012;481:329–334. doi: 10.1038/nature10733. PubMed DOI PMC
Pugh T.J., Weeraratne S.D., Archer T.C., Krummel D.A.P., Auclair D., Bochicchio J., Carneiro M.O., Carter S.L., Cibulskis K., Erlich R.L., et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nat. Cell Biol. 2012;488:106–110. doi: 10.1038/nature11329. PubMed DOI PMC
Pierron G., Tirode F., Lucchesi C., Reynaud S., Ballet S., Cohen-Gogo S., Perrin V., Coindre J.-M., Delattre O. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat. Genet. 2012;44:461–466. doi: 10.1038/ng.1107. PubMed DOI
Totoki Y., Tatsuno K., Yamamoto S., Arai Y., Hosoda F., Ishikawa S., Tsutsumi S., Sonoda K., Totsuka H., Shirakihara T., et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 2011;43:464–469. doi: 10.1038/ng.804. PubMed DOI
Marsh J.C.W., Mufti G. Clinical significance of acquired somatic mutations in aplastic anaemia. Int. J. Hematol. 2016;104:159–167. doi: 10.1007/s12185-016-1972-8. PubMed DOI
Ogawa S. Clonal hematopoiesis in acquired aplastic anemia. Blood. 2016;128:337–347. doi: 10.1182/blood-2016-01-636381. PubMed DOI PMC
Damm F., Chesnais V., Nagata Y., Yoshida K., Scourzic L., Okuno Y., Itzykson R., Sanada M., Shiraishi Y., Gelsi-Boyer V., et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013;122:3169–3177. doi: 10.1182/blood-2012-11-469619. PubMed DOI
Steensma D.P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Hematology. 2018;2018:264–269. doi: 10.1182/asheducation-2018.1.264. PubMed DOI PMC
Abuhadra N., Mukherjee S., Al-Issa K., Adema V., Hirsch C.M., Advani A., Przychodzen B., Makhoul A., Awada H., Maciejewski J.P., et al. BCOR and BCORL1 mutations in myelodysplastic syndromes (MDS): Clonal architecture and impact on outcomes. Leuk. Lymphoma. 2019;60:1587–1590. doi: 10.1080/10428194.2018.1543885. PubMed DOI PMC
Montalban-Bravo G., Takahashi K., Patel K., Wang F., Xingzhi S., Nogueras G.M., Huang X., Pierola A.A., Jabbour E., Colla S., et al. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget. 2018;9:9714–9727. doi: 10.18632/oncotarget.23882. PubMed DOI PMC
Tara S., Isshiki Y., Nakajima-Takagi Y., Oshima M., Aoyama K., Tanaka T., Shinoda D., Koide S., Saraya A., Miyagi S., et al. Bcor insufficiency promotes initiation and progression of myelodysplastic syndrome. Blood. 2018;132:2470–2483. doi: 10.1182/blood-2018-01-827964. PubMed DOI PMC
Grossmann V., Tiacci E., Holmes A.B., Kohlmann A., Martelli M.P., Kern W., Spanhol-Rosseto A., Klein H.-U., Dugas M., Schindela S., et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood. 2011;118:6153–6163. doi: 10.1182/blood-2011-07-365320. PubMed DOI
Terada K., Yamaguchi H., Ueki T., Usuki K., Kobayashi Y., Tajika K., Gomi S., Kurosawa S., Saito R., Furuta Y., et al. Usefulness ofBCORgene mutation as a prognostic factor in acute myeloid leukemia with intermediate cytogenetic prognosis. Genes Chromosom. Cancer. 2018;57:401–408. doi: 10.1002/gcc.22542. PubMed DOI
De Rooij J.D., Heuvel-Eibrink M.M.V.D., Hermkens M.C., Verboon L.J., Arentsen-Peters S.T.C.J.M., Fornerod M., Baruchel A., Stary J., Reinhardt D., De Haas V., et al. BCOR and BCORL1 mutations in pediatric acute myeloid leukemia. Hematology. 2015;100:e194–e195. doi: 10.3324/haematol.2014.117796. PubMed DOI PMC
Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI
Röllig C., Thiede C., Gramatzki M., Aulitzky W., Bodenstein H., Bornhäuser M., Platzbecker U., Stuhlmann R., Schuler U., Soucek S., et al. A novel prognostic model in elderly patients with acute myeloid leukemia: Results of 909 patients entered into the prospective AML96 trial. Blood. 2010;116:971–978. doi: 10.1182/blood-2010-01-267302. PubMed DOI
Schaich M., Parmentier S., Kramer M., Illmer T., Stölzel F., Röllig C., Thiede C., Hänel M., Schäfer-Eckart K., Aulitzky W., et al. High-Dose Cytarabine Consolidation with or Without Additional Amsacrine and Mitoxantrone in Acute Myeloid Leukemia: Results of the Prospective Randomized AML2003 Trial. J. Clin. Oncol. 2013;31:2094–2102. doi: 10.1200/JCO.2012.46.4743. PubMed DOI
Röllig C., Kramer M., Gabrecht M., Hänel M., Herbst R., Kaiser U., Schmitz N., Kullmer J., Fetscher S., Link H., et al. Intermediate-dose cytarabine plus mitoxantrone versus standard-dose cytarabine plus daunorubicin for acute myeloid leukemia in elderly patients. Ann. Oncol. 2018;29:973–978. doi: 10.1093/annonc/mdy030. PubMed DOI
Röllig C., Serve H., Hüttmann A., Noppeney R., Müller-Tidow C., Krug U., Baldus C.D., Brandts C.H., Kunzmann V., Einsele H., et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): A multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16:1691–1699. doi: 10.1016/S1470-2045(15)00362-9. PubMed DOI
Gebhard C., Glatz D., Schwarzfischer L., Wimmer J., Stasik S., Nuetzel M., Heudobler D., Andreesen R., Ehninger G., Thiede C., et al. Profiling of aberrant DNA methylation in acute myeloid leukemia reveals subclasses of CG-rich regions with epigenetic or genetic association. Leukemia. 2019;33:26–36. doi: 10.1038/s41375-018-0165-2. PubMed DOI
Stasik S., Schuster C., Ortlepp C., Platzbecker U., Bornhauser M., Schetelig J., Ehninger G., Folprecht G., Thiede C. An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. Biomol. Detect. Quantif. 2018;15:6–12. doi: 10.1016/j.bdq.2017.12.001. PubMed DOI PMC
Adzhubei I., Jordan D.M., Sunyaev S.R. Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013;76:7–20. doi: 10.1002/0471142905.hg0720s76. PubMed DOI PMC
Nazha A., Zarzour A., Al-Issa K., Radivoyevitch T., Carraway H.E., Hirsch C.M., Przychodzen B., Patel B.J., Clemente M., Sanikommu S.R., et al. The complexity of interpreting genomic data in patients with acute myeloid leukemia. Blood Cancer J. 2016;6:e510. doi: 10.1038/bcj.2016.115. PubMed DOI PMC
Ley T.J., Ding L., Walter M.J., McLellan M.D., Lamprecht T.L., Larson D.E., Kandoth C., Payton J.E., Baty J., Welch J.J., et al. DNMT3AMutations in Acute Myeloid Leukemia. N. Engl. J. Med. 2010;363:2424–2433. doi: 10.1056/NEJMoa1005143. PubMed DOI PMC
Sportoletti P., Sorcini D., Guzman A.G., Reyes J.M., Stella A., Marra A., Sartori S., Brunetti L., Rossi R., Del Papa B., et al. Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice. Leukemia. 2020:1–15. doi: 10.1038/s41375-020-01075-3. PubMed DOI PMC
Wang M., Yang C., Zhang L., Schaar D.G. Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia. Stem Cells Int. 2017;2017:6962379. doi: 10.1155/2017/6962379. PubMed DOI PMC
Ito S., D’Alessio A.C., Taranova O.V., Hong K., Sowers L.C., Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nat. Cell Biol. 2010;466:1129–1133. doi: 10.1038/nature09303. PubMed DOI PMC
Malcovati L., Papaemmanuil E., Ambaglio I., Elena C., Gallì A., Della Porta M.G., Travaglino E., Pietra D., Pascutto C., Ubezio M., et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood. 2014;124:1513–1521. doi: 10.1182/blood-2014-03-560227. PubMed DOI PMC
Ichikawa M., Yoshimi A., Nakagawa M., Nishimoto N., Watanabe-Okochi N., Kurokawa M. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int. J. Hematol. 2013;97:726–734. doi: 10.1007/s12185-013-1347-3. PubMed DOI
Kelly M.J., So J., Rogers A.J., Gregory G., Li J., Zethoven M., Gearhart M.D., Bardwell V.J., Johnstone R.W., Vervoort S.J., et al. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat. Commun. 2019;10:1–14. doi: 10.1038/s41467-019-09250-6. PubMed DOI PMC
Eisfeld A.-K., Kohlschmidt J., Mims A., Nicolet D., Walker C.J., Blachly J.S., Carroll A.J., Papaioannou D., Kolitz J.E., Powell B.E., et al. Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 Years. Leukemia. 2020;34:3215–3227. doi: 10.1038/s41375-020-0872-3. PubMed DOI PMC