• This record comes from PubMed

Loss-of-Function Mutations of BCOR Are an Independent Marker of Adverse Outcomes in Intensively Treated Patients with Acute Myeloid Leukemia

. 2021 Apr 26 ; 13 (9) : . [epub] 20210426

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Acute myeloid leukemia (AML) is characterized by recurrent genetic events. The BCL6 corepressor (BCOR) and its homolog, the BCL6 corepressor-like 1 (BCORL1), have been reported to be rare but recurrent mutations in AML. Previously, smaller studies have reported conflicting results regarding impacts on outcomes. Here, we retrospectively analyzed a large cohort of 1529 patients with newly diagnosed and intensively treated AML. BCOR and BCORL1 mutations were found in 71 (4.6%) and 53 patients (3.5%), respectively. Frequently co-mutated genes were DNTM3A, TET2 and RUNX1. Mutated BCORL1 and loss-of-function mutations of BCOR were significantly more common in the ELN2017 intermediate-risk group. Patients harboring loss-of-function mutations of BCOR had a significantly reduced median event-free survival (HR = 1.464 (95%-Confidence Interval (CI): 1.005-2.134), p = 0.047), relapse-free survival (HR = 1.904 (95%-CI: 1.163-3.117), p = 0.01), and trend for reduced overall survival (HR = 1.495 (95%-CI: 0.990-2.258), p = 0.056) in multivariable analysis. Our study establishes a novel role for loss-of-function mutations of BCOR regarding risk stratification in AML, which may influence treatment allocation.

Abteilung für Hämatologie Onkologie und Palliativmedizin Robert Bosch Krankenhaus 70376 Stuttgart Germany

Department of Internal Medicine Hematology and Oncology Masaryk University and University Hospital 60177 Brno Czech Republic

Deutsches Krebsforschungszentrum and Medizinische Klinik 5 Universitätsklinikum Heidelberg 69120 Heidelberg Germany

DKMS Clinical Trials Unit 01309 Dresden Germany

Hämatologie und Onkologie Charité Universitätsmedizin 10117 Berlin Germany

Innere Medizin 3 HSK Wiesbaden 65199 Wiesbaden Germany

Klinik für Hämatologie Onkologie Hämostaseologie und Stammzelltransplantation Uniklinik RWTH Aachen 52074 Aachen Germany

Klinik für Hämatologie Onkologie Immunologie Philipps Universität 35043 Marburg Germany

Klinik für Hämatologie Onkologie und Palliativmedizin Rems Murr Klinikum Winnenden 71364 Winnenden Germany

Klinik für Hämatologie Universitätsklinikum Essen 45147 Essen Germany

Klinik für Innere Medizin 2 Universitätsklinikum Jena 07740 Jena Germany

Klinik für Innere Medizin 5 Klinikum Nürnberg Nord 90419 Nürnberg Germany

Medizinische Klinik 2 St Bernward Krankenhaus 31134 Hildesheim Germany

Medizinische Klinik 2 Universitätsklinikum Frankfurt 60590 Frankfurt am Main Germany

Medizinische Klinik 3 Klinikum Chemnitz 09116 Chemnitz Germany

Medizinische Klinik 3 St Marien Krankenhaus Siegen 57072 Siegen Germany

Medizinische Klinik 5 Universitätsklinikum Erlangen 91054 Erlangen Germany

Medizinische Klinik A Universitätsklinikum Münster 48149 Münster Germany

Medizinische Klinik und Poliklinik 1 Hämatologie und Zelltherapie Universitätsklinikum Leipzig 04103 Leipzig Germany

Medizinische Klinik und Poliklinik 1 Universitätsklinikum Carl Gustav Carus 01307 Dresden Germany

Medizinische Klinik und Poliklinik 2 Universitätsklinikum Würzburg 97080 Würzburg Germany

National Center for Tumor Diseases 01307 Dresden Germany

See more in PubMed

Papaemmanuil E., Gerstung M., Bullinger L., Gaidzik V.I., Paschka P., Roberts N.D., Potter N.E., Heuser M., Thol F., Bolli N., et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N. Engl. J. Med. 2016;374:2209–2221. doi: 10.1056/NEJMoa1516192. PubMed DOI PMC

Shumilov E., Flach J., Kohlmann A., Banz Y., Bonadies N., Fiedler M., Pabst T., Bacher U. Current status and trends in the diagnostics of AML and MDS. Blood Rev. 2018;32:508–519. doi: 10.1016/j.blre.2018.04.008. PubMed DOI

Bullinger L., Döhner K., Döhner H. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. J. Clin. Oncol. 2017;35:934–946. doi: 10.1200/JCO.2016.71.2208. PubMed DOI

Döhner H., Estey E., Grimwade D., Amadori S., Appelbaum F.R., Büchner T., Dombret H., Ebert B.L., Fenaux P., Larson R.A., et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–447. doi: 10.1182/blood-2016-08-733196. PubMed DOI PMC

Huynh K.D., Fischle W., Verdin E., Bardwell V.J. BCoR, a novel corepressor involved in BCL-6 repression. Genome Res. 2000;14:1810–1823. PubMed PMC

Li M., Collins R., Jiao Y., Ouillette P., Bixby D., Erba H., Vogelstein B., Kinzler K.W., Papadopoulos N., Malek S.N. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia. Blood. 2011;118:5914–5917. doi: 10.1182/blood-2011-05-356204. PubMed DOI PMC

Astolfi A., Fiore M., Melchionda F., Indio V., Bertuccio S.N., Pession A. BCOR involvement in cancer. Epigenomics. 2019;11:835–855. doi: 10.2217/epi-2018-0195. PubMed DOI PMC

Sparmann A., Van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat. Rev. Cancer. 2006;6:846–856. doi: 10.1038/nrc1991. PubMed DOI

Simon J.A., Kingston R.E. Occupying Chromatin: Polycomb Mechanisms for Getting to Genomic Targets, Stopping Transcriptional Traffic, and Staying Put. Mol. Cell. 2013;49:808–824. doi: 10.1016/j.molcel.2013.02.013. PubMed DOI PMC

Cao Q., Gearhart M.D., Gery S., Shojaee S., Yang H., Sun H., Lin D.-C., Bai J.-W., Mead M., Zhao Z., et al. BCOR regulates myeloid cell proliferation and differentiation. Leukemia. 2016;30:1155–1165. doi: 10.1038/leu.2016.2. PubMed DOI PMC

Gearhart M.D., Corcoran C.M., Wamstad J.A., Bardwell V.J. Polycomb Group and SCF Ubiquitin Ligases Are Found in a Novel BCOR Complex That Is Recruited to BCL6 Targets. Mol. Cell. Biol. 2006;26:6880–6889. doi: 10.1128/MCB.00630-06. PubMed DOI PMC

Wang Z., Gearhart M.D., Lee Y.-W., Kumar I., Ramazanov B., Zhang Y., Hernandez C., Lu A.Y., Neuenkirchen N., Deng J., et al. A Non-canonical BCOR-PRC1.1 Complex Represses Differentiation Programs in Human ESCs. Cell Stem Cell. 2018;22:235–251.e9. doi: 10.1016/j.stem.2017.12.002. PubMed DOI PMC

Wamstad J.A., Corcoran C.M., Keating A.M., Bardwell V.J. Role of the Transcriptional Corepressor Bcor in Embryonic Stem Cell Differentiation and Early Embryonic Development. PLoS ONE. 2008;3:e2814. doi: 10.1371/journal.pone.0002814. PubMed DOI PMC

Ng D., Thakker N., Corcoran C.M., Donnai D., Perveen R., Schneider A., Hadley D.W., Tifft C.J., Zhang L., Wilkie A.O.M., et al. Oculofaciocardiodental and Lenz microphthalmia syndromes result from distinct classes of mutations in BCOR. Nat. Genet. 2004;36:411–416. doi: 10.1038/ng1321. PubMed DOI

Zhang J., Benavente C.A., McEvoy J., Flores-Otero J., Ding L., Chen X., Ulyanov A., Wu G., Wilson M.W., Wang J., et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nat. Cell Biol. 2012;481:329–334. doi: 10.1038/nature10733. PubMed DOI PMC

Pugh T.J., Weeraratne S.D., Archer T.C., Krummel D.A.P., Auclair D., Bochicchio J., Carneiro M.O., Carter S.L., Cibulskis K., Erlich R.L., et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nat. Cell Biol. 2012;488:106–110. doi: 10.1038/nature11329. PubMed DOI PMC

Pierron G., Tirode F., Lucchesi C., Reynaud S., Ballet S., Cohen-Gogo S., Perrin V., Coindre J.-M., Delattre O. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat. Genet. 2012;44:461–466. doi: 10.1038/ng.1107. PubMed DOI

Totoki Y., Tatsuno K., Yamamoto S., Arai Y., Hosoda F., Ishikawa S., Tsutsumi S., Sonoda K., Totsuka H., Shirakihara T., et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat. Genet. 2011;43:464–469. doi: 10.1038/ng.804. PubMed DOI

Marsh J.C.W., Mufti G. Clinical significance of acquired somatic mutations in aplastic anaemia. Int. J. Hematol. 2016;104:159–167. doi: 10.1007/s12185-016-1972-8. PubMed DOI

Ogawa S. Clonal hematopoiesis in acquired aplastic anemia. Blood. 2016;128:337–347. doi: 10.1182/blood-2016-01-636381. PubMed DOI PMC

Damm F., Chesnais V., Nagata Y., Yoshida K., Scourzic L., Okuno Y., Itzykson R., Sanada M., Shiraishi Y., Gelsi-Boyer V., et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood. 2013;122:3169–3177. doi: 10.1182/blood-2012-11-469619. PubMed DOI

Steensma D.P. Clinical consequences of clonal hematopoiesis of indeterminate potential. Hematology. 2018;2018:264–269. doi: 10.1182/asheducation-2018.1.264. PubMed DOI PMC

Abuhadra N., Mukherjee S., Al-Issa K., Adema V., Hirsch C.M., Advani A., Przychodzen B., Makhoul A., Awada H., Maciejewski J.P., et al. BCOR and BCORL1 mutations in myelodysplastic syndromes (MDS): Clonal architecture and impact on outcomes. Leuk. Lymphoma. 2019;60:1587–1590. doi: 10.1080/10428194.2018.1543885. PubMed DOI PMC

Montalban-Bravo G., Takahashi K., Patel K., Wang F., Xingzhi S., Nogueras G.M., Huang X., Pierola A.A., Jabbour E., Colla S., et al. Impact of the number of mutations in survival and response outcomes to hypomethylating agents in patients with myelodysplastic syndromes or myelodysplastic/myeloproliferative neoplasms. Oncotarget. 2018;9:9714–9727. doi: 10.18632/oncotarget.23882. PubMed DOI PMC

Tara S., Isshiki Y., Nakajima-Takagi Y., Oshima M., Aoyama K., Tanaka T., Shinoda D., Koide S., Saraya A., Miyagi S., et al. Bcor insufficiency promotes initiation and progression of myelodysplastic syndrome. Blood. 2018;132:2470–2483. doi: 10.1182/blood-2018-01-827964. PubMed DOI PMC

Grossmann V., Tiacci E., Holmes A.B., Kohlmann A., Martelli M.P., Kern W., Spanhol-Rosseto A., Klein H.-U., Dugas M., Schindela S., et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood. 2011;118:6153–6163. doi: 10.1182/blood-2011-07-365320. PubMed DOI

Terada K., Yamaguchi H., Ueki T., Usuki K., Kobayashi Y., Tajika K., Gomi S., Kurosawa S., Saito R., Furuta Y., et al. Usefulness ofBCORgene mutation as a prognostic factor in acute myeloid leukemia with intermediate cytogenetic prognosis. Genes Chromosom. Cancer. 2018;57:401–408. doi: 10.1002/gcc.22542. PubMed DOI

De Rooij J.D., Heuvel-Eibrink M.M.V.D., Hermkens M.C., Verboon L.J., Arentsen-Peters S.T.C.J.M., Fornerod M., Baruchel A., Stary J., Reinhardt D., De Haas V., et al. BCOR and BCORL1 mutations in pediatric acute myeloid leukemia. Hematology. 2015;100:e194–e195. doi: 10.3324/haematol.2014.117796. PubMed DOI PMC

Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI

Röllig C., Thiede C., Gramatzki M., Aulitzky W., Bodenstein H., Bornhäuser M., Platzbecker U., Stuhlmann R., Schuler U., Soucek S., et al. A novel prognostic model in elderly patients with acute myeloid leukemia: Results of 909 patients entered into the prospective AML96 trial. Blood. 2010;116:971–978. doi: 10.1182/blood-2010-01-267302. PubMed DOI

Schaich M., Parmentier S., Kramer M., Illmer T., Stölzel F., Röllig C., Thiede C., Hänel M., Schäfer-Eckart K., Aulitzky W., et al. High-Dose Cytarabine Consolidation with or Without Additional Amsacrine and Mitoxantrone in Acute Myeloid Leukemia: Results of the Prospective Randomized AML2003 Trial. J. Clin. Oncol. 2013;31:2094–2102. doi: 10.1200/JCO.2012.46.4743. PubMed DOI

Röllig C., Kramer M., Gabrecht M., Hänel M., Herbst R., Kaiser U., Schmitz N., Kullmer J., Fetscher S., Link H., et al. Intermediate-dose cytarabine plus mitoxantrone versus standard-dose cytarabine plus daunorubicin for acute myeloid leukemia in elderly patients. Ann. Oncol. 2018;29:973–978. doi: 10.1093/annonc/mdy030. PubMed DOI

Röllig C., Serve H., Hüttmann A., Noppeney R., Müller-Tidow C., Krug U., Baldus C.D., Brandts C.H., Kunzmann V., Einsele H., et al. Addition of sorafenib versus placebo to standard therapy in patients aged 60 years or younger with newly diagnosed acute myeloid leukaemia (SORAML): A multicentre, phase 2, randomised controlled trial. Lancet Oncol. 2015;16:1691–1699. doi: 10.1016/S1470-2045(15)00362-9. PubMed DOI

Gebhard C., Glatz D., Schwarzfischer L., Wimmer J., Stasik S., Nuetzel M., Heudobler D., Andreesen R., Ehninger G., Thiede C., et al. Profiling of aberrant DNA methylation in acute myeloid leukemia reveals subclasses of CG-rich regions with epigenetic or genetic association. Leukemia. 2019;33:26–36. doi: 10.1038/s41375-018-0165-2. PubMed DOI

Stasik S., Schuster C., Ortlepp C., Platzbecker U., Bornhauser M., Schetelig J., Ehninger G., Folprecht G., Thiede C. An optimized targeted Next-Generation Sequencing approach for sensitive detection of single nucleotide variants. Biomol. Detect. Quantif. 2018;15:6–12. doi: 10.1016/j.bdq.2017.12.001. PubMed DOI PMC

Adzhubei I., Jordan D.M., Sunyaev S.R. Predicting Functional Effect of Human Missense Mutations Using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013;76:7–20. doi: 10.1002/0471142905.hg0720s76. PubMed DOI PMC

Nazha A., Zarzour A., Al-Issa K., Radivoyevitch T., Carraway H.E., Hirsch C.M., Przychodzen B., Patel B.J., Clemente M., Sanikommu S.R., et al. The complexity of interpreting genomic data in patients with acute myeloid leukemia. Blood Cancer J. 2016;6:e510. doi: 10.1038/bcj.2016.115. PubMed DOI PMC

Ley T.J., Ding L., Walter M.J., McLellan M.D., Lamprecht T.L., Larson D.E., Kandoth C., Payton J.E., Baty J., Welch J.J., et al. DNMT3AMutations in Acute Myeloid Leukemia. N. Engl. J. Med. 2010;363:2424–2433. doi: 10.1056/NEJMoa1005143. PubMed DOI PMC

Sportoletti P., Sorcini D., Guzman A.G., Reyes J.M., Stella A., Marra A., Sartori S., Brunetti L., Rossi R., Del Papa B., et al. Bcor deficiency perturbs erythro-megakaryopoiesis and cooperates with Dnmt3a loss in acute erythroid leukemia onset in mice. Leukemia. 2020:1–15. doi: 10.1038/s41375-020-01075-3. PubMed DOI PMC

Wang M., Yang C., Zhang L., Schaar D.G. Molecular Mutations and Their Cooccurrences in Cytogenetically Normal Acute Myeloid Leukemia. Stem Cells Int. 2017;2017:6962379. doi: 10.1155/2017/6962379. PubMed DOI PMC

Ito S., D’Alessio A.C., Taranova O.V., Hong K., Sowers L.C., Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nat. Cell Biol. 2010;466:1129–1133. doi: 10.1038/nature09303. PubMed DOI PMC

Malcovati L., Papaemmanuil E., Ambaglio I., Elena C., Gallì A., Della Porta M.G., Travaglino E., Pietra D., Pascutto C., Ubezio M., et al. Driver somatic mutations identify distinct disease entities within myeloid neoplasms with myelodysplasia. Blood. 2014;124:1513–1521. doi: 10.1182/blood-2014-03-560227. PubMed DOI PMC

Ichikawa M., Yoshimi A., Nakagawa M., Nishimoto N., Watanabe-Okochi N., Kurokawa M. A role for RUNX1 in hematopoiesis and myeloid leukemia. Int. J. Hematol. 2013;97:726–734. doi: 10.1007/s12185-013-1347-3. PubMed DOI

Kelly M.J., So J., Rogers A.J., Gregory G., Li J., Zethoven M., Gearhart M.D., Bardwell V.J., Johnstone R.W., Vervoort S.J., et al. Bcor loss perturbs myeloid differentiation and promotes leukaemogenesis. Nat. Commun. 2019;10:1–14. doi: 10.1038/s41467-019-09250-6. PubMed DOI PMC

Eisfeld A.-K., Kohlschmidt J., Mims A., Nicolet D., Walker C.J., Blachly J.S., Carroll A.J., Papaioannou D., Kolitz J.E., Powell B.E., et al. Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 Years. Leukemia. 2020;34:3215–3227. doi: 10.1038/s41375-020-0872-3. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...