Development and performance assessment of an advanced Lucas-Kanade algorithm for dose mapping of cervical cancer external radiotherapy and brachytherapy plans
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33942952
PubMed Central
PMC8130240
DOI
10.1002/acm2.13249
Knihovny.cz E-zdroje
- Klíčová slova
- Lucas-Kanade algorithm, deformable image registration, treatment planning,
- MeSH
- algoritmy MeSH
- brachyterapie * MeSH
- celková dávka radioterapie MeSH
- lidé MeSH
- nádory děložního čípku * diagnostické zobrazování radioterapie MeSH
- plánování radioterapie pomocí počítače MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: The aim of this study was to verify the possibility of summing the dose distributions of combined radiotherapeutic treatment of cervical cancer using the extended Lucas-Kanade algorithm for deformable image registration. MATERIALS AND METHODS: First, a deformable registration of planning computed tomography images for the external radiotherapy and brachytherapy treatment of 10 patients with different parameter settings of the Lucas-Kanade algorithm was performed. By evaluating the registered data using landmarks distance, root mean square error of Hounsfield units and 2D gamma analysis, the optimal parameter values were found. Next, with another group of 10 patients, the accuracy of the dose mapping of the optimized Lucas-Kanade algorithm was assessed and compared with Horn-Schunck and modified Demons algorithms using dose differences at landmarks. RESULTS: The best results of the Lucas-Kanade deformable registration were achieved for two pyramid levels in combination with a window size of 3 voxels. With this registration setting, the average landmarks distance was 2.35 mm, the RMSE was the smallest and the average gamma score reached a value of 86.7%. The mean dose difference at the landmarks after mapping the external radiotherapy and brachytherapy dose distributions was 1.33 Gy. A statistically significant difference was observed on comparing the Lucas-Kanade method with the Horn-Schunck and Demons algorithms, where after the deformable registration, the average difference in dose was 1.60 Gy (P-value: 0.0055) and 1.69 Gy (P-value: 0.0012), respectively. CONCLUSION: Lucas-Kanade deformable registration can lead to a more accurate model of dose accumulation and provide a more realistic idea of the dose distribution.
Department of Medical Physics and Radiation Protection University Hospital Olomouc Czech Republic
Department of Nuclear Medicine University Hospital Olomouc Czech Republic
Department of Oncology University Hospital Olomouc Czech Republic
Zobrazit více v PubMed
Tanderup K, Nielsen SK, Nyvang G‐B, et al. From point A to the sculpted pear: MR image guidance significantly improves tumour dose and sparing of organs at risk in brachytherapy of cervical cancer. Radiother Oncol. 2010;94:173–180. PubMed
ICRU. International Commission on Radiation Units and Measurements . Prescribing, recording and reporting brachytherapy for cancer of the cervix, ICRU Report 89, J ICRU. 2016;13. PubMed
Andersen ES, Noe KØ, Sørensen TS, et al. Simple DVH parameter addition as compared to deformable registration for bladder dose accumulation in cervix cancer brachytherapy. Radiother Oncol. 2013;107:52–57. PubMed
Sun B, Yang D, Esthappan J, et al. Three‐dimensional dose accumulation in pseudo‐split‐field IMRT and brachytherapy for locally advanced cervical cancer. Brachytherapy. 2015;14:481–489. PubMed
Bentzen SM, Dörr W, Gahbauer R, et al. Bioeffect modeling and equieffective dose concepts in radiation oncology ‐terminology, quantities and units. Radiother Oncol. 2012;105:266–268. PubMed
Moulton CR, House MJ, Lye V, et al. Registering prostate external beam radiotherapy with boost form high‐dose‐rate brachytherapy: a comparative evaluation of deformable registration algorithms. Radiat Oncol. 2015;10:254. PubMed PMC
Kadoya N, Fujito Y, Katsuta Y, et al, Evaluation of various deformable image registration algorithm for thoracic images. J Radiat Res. 2014;55:175–182. PubMed PMC
Brock K. Results of a Multi‐Institution Deformable Registration Accuracy Study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010;76:583–596. PubMed
Kirby N, Chuang C, Ueda U, Pouliot J. The need for application‐based adaptation of deformable image registration. Med Phys. 2013;40:011702. PubMed
Yeo UJ, Supple JR, Taylor ML, Smith R, Kron T, Franich RD. Performance of 12 DIR algorithms in low‐contrast regions for mass and density conserving deformation. Med Phys. 2013;40:101701. PubMed
Roth S, Black MJ. On the spatial statistics of optical flow. Int J Comput Vision. 2007;74:33–50.
Lucas BD, Kanade T. An iterative image registration technique with an application to stereo vision. In: IEEE international joint conference on artificial intelligence, Vancouver, 1981; 674–679.
Bruhn A, Weickert J, Schnorr CH. Lucas/Kanade Meets Horn/Schunck: Combining local and global optic flow methods. Int J Comput Vision. 2005;61:211–231.
Tarasenko V, Park D‐W. Detection and tracking over image pyramids using Lucas and Kanade algorithm. Int J Appl Eng Res, 2016, 11.
Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015;42:40–53. PubMed
Varadhan R, Karangelis G, Krishnan K, Hui S. A framework for deformable image registration validation in radiotherapy clinical applications. J Appl Clin Med Phys. 2013;14:4066. PubMed PMC
Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Med Phys. 1998;25:656–661. PubMed
Depuydt T, Van Esch A, Huyskens DP. A quantitative evaluation of IMRT dose distributions: refinement and clinical assessment of the gamma evaluation. Radiother Oncol. 2002;62:309–319. PubMed
Yang D, Brame S, El Naqa I, et al. Technical Note: dirart – A software suite for deformable image registration and adaptive radiotherapy research. Med Phys. 2011;38:67–77. PubMed PMC
Yeo UJ, Taylor ML, Supple JR, et al. Is it sensible to "deform" dose? 3D experimental validation of dose‐warping. Med Phys. 2012;39:5065–5072. PubMed
Potter R, Haie‐Meder C, Limbergen EV, et al. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): Concepts and terms in 3D image‐based treatment planning in cervix cancer brachytherapy,‐3D dose volume parameters and aspects of 3D image‐based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78:67–77. PubMed
Zakariaee R, Hamarneh G, Brown CJ, Gaudet M, Aquino‐Parsons C, Spadinger I. Bladder accumulated dose in image‐guided high‐dose‐rate brachytherapy for locally advanced cervical cancer and its relation to urinary toxicity. Phys Med Biol. 2016;61:8408–8424. PubMed