Low Plasma Citrate Levels and Specific Transcriptional Signatures Associated with Quiescence of CD34+ Progenitors Predict Azacitidine Therapy Failure in MDS/AML Patients
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV16-33485A
Czech Health Research Council
00023736
Ministry of Health of the Czech Republic
IGA_LF_2020_005
Internal Grant Agency of Palacky University
PubMed
33946220
PubMed Central
PMC8125503
DOI
10.3390/cancers13092161
PII: cancers13092161
Knihovny.cz E-zdroje
- Klíčová slova
- IDH2, azacitidine therapy, histone acetylation, metabolic signature, myelodysplastic syndromes,
- Publikační typ
- časopisecké články MeSH
To better understand the molecular basis of resistance to azacitidine (AZA) therapy in myelodysplastic syndromes (MDS) and acute myeloid leukemia with myelodysplasia-related changes (AML-MRC), we performed RNA sequencing on pre-treatment CD34+ hematopoietic stem/progenitor cells (HSPCs) isolated from 25 MDS/AML-MRC patients of the discovery cohort (10 AZA responders (RD), six stable disease, nine progressive disease (PD) during AZA therapy) and from eight controls. Eleven MDS/AML-MRC samples were also available for analysis of selected metabolites, along with 17 additional samples from an independent validation cohort. Except for two patients, the others did not carry isocitrate dehydrogenase (IDH)1/2 mutations. Transcriptional landscapes of the patients' HSPCs were comparable to those published previously, including decreased signatures of active cell cycling and DNA damage response in PD compared to RD and controls. In addition, PD-derived HSPCs revealed repressed markers of the tricarboxylic acid cycle, with IDH2 among the top 50 downregulated genes in PD compared to RD. Decreased citrate plasma levels, downregulated expression of the (ATP)-citrate lyase and other transcriptional/metabolic networks indicate metabolism-driven histone modifications in PD HSPCs. Observed histone deacetylation is consistent with transcription-nonpermissive chromatin configuration and quiescence of PD HSPCs. This study highlights the complexity of the molecular network underlying response/resistance to hypomethylating agents.
1st Faculty of Medicine Charles University 121 08 Prague Czech Republic
Institute of Hematology and Blood Transfusion 128 20 Prague Czech Republic
Zobrazit více v PubMed
Silverman L.R., Demakos E.P., Peterson B.L., Kornblith A.B., Holland J.C., Odchimar-Reissig R., Stone R.M., Nelson D., Powell B.L., DeCastro C.M., et al. Randomized Controlled Trial of Azacitidine in Patients With the Myelodysplastic Syndrome: A Study of the Cancer and Leukemia Group B. J. Clin. Oncol. 2002;20:2429–2440. doi: 10.1200/JCO.2002.04.117. PubMed DOI
Silverman L.R., McKenzie D.R., Peterson B.L., Holland J.F., Backstrom J.T., Beach C.L., Larson R.A. Further Analysis of Trials With Azacitidine in Patients With Myelodysplastic Syndrome: Studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J. Clin. Oncol. 2006;24:3895–3903. doi: 10.1200/JCO.2005.05.4346. PubMed DOI
Fenaux P., Mufti G.J., Hellstrom-Lindberg E., Santini V., Finelli C., Giagounidis A., Schoch R., Gattermann N., Sanz G., List A., et al. Efficacy of Azacitidine Compared with That of Conventional Care Regimens in the Treatment of Higher-Risk Myelodysplastic Syndromes: A Randomised, Open-Label, Phase III Study. Lancet Oncol. 2009;10:223–232. doi: 10.1016/S1470-2045(09)70003-8. PubMed DOI PMC
Platzbecker U. Treatment of MDS. Blood. 2019;133:1096–1107. doi: 10.1182/blood-2018-10-844696. PubMed DOI
Santini V., Prebet T., Fenaux P., Gattermann N., Nilsson L., Pfeilstöcker M., Vyas P., List A.F. Minimizing Risk of Hypomethylating Agent Failure in Patients with Higher-Risk MDS and Practical Management Recommendations. Leuk. Res. 2014;38:1381–1391. doi: 10.1016/j.leukres.2014.09.008. PubMed DOI
Sekeres M.A., Cutler C. How We Treat Higher-Risk Myelodysplastic Syndromes. Blood. 2014;123:829–836. doi: 10.1182/blood-2013-08-496935. PubMed DOI
Santini V. How I Treat MDS after Hypomethylating Agent Failure. Blood. 2019;133:521–529. doi: 10.1182/blood-2018-03-785915. PubMed DOI
Itzykson R., Thépot S., Quesnel B., Dreyfus F., Beyne-Rauzy O., Turlure P., Vey N., Recher C., Dartigeas C., Legros L., et al. Prognostic Factors for Response and Overall Survival in 282 Patients with Higher-Risk Myelodysplastic Syndromes Treated with Azacitidine. Blood. 2011;117:403–411. doi: 10.1182/blood-2010-06-289280. PubMed DOI
Döhner H., Dolnik A., Tang L., Seymour J.F., Minden M.D., Stone R.M., del Castillo T.B., Al-Ali H.K., Santini V., Vyas P., et al. Cytogenetics and Gene Mutations Influence Survival in Older Patients with Acute Myeloid Leukemia Treated with Azacitidine or Conventional Care. Leukemia. 2018;32:2546–2557. doi: 10.1038/s41375-018-0257-z. PubMed DOI PMC
Nazha A., Sekeres M.A., Bejar R., Rauh M.J., Othus M., Komrokji R.S., Barnard J., Hilton C.B., Kerr C.M., Steensma D.P., et al. Genomic Biomarkers to Predict Resistance to Hypomethylating Agents in Patients With Myelodysplastic Syndromes Using Artificial Intelligence. JCO Precis. Oncol. 2019;3:1–11. doi: 10.1200/PO.19.00119. PubMed DOI PMC
Bejar R., Lord A., Stevenson K., Bar-Natan M., Pérez-Ladaga A., Zaneveld J., Wang H., Caughey B., Stojanov P., Getz G., et al. TET2 Mutations Predict Response to Hypomethylating Agents in Myelodysplastic Syndrome Patients. Blood. 2014;124:2705–2712. doi: 10.1182/blood-2014-06-582809. PubMed DOI PMC
Traina F., Visconte V., Elson P., Tabarroki A., Jankowska A.M., Hasrouni E., Sugimoto Y., Szpurka H., Makishima H., O’Keefe C.L., et al. Impact of Molecular Mutations on Treatment Response to DNMT Inhibitors in Myelodysplasia and Related Neoplasms. Leukemia. 2014;28:78–87. doi: 10.1038/leu.2013.269. PubMed DOI
Al-Issa K., Mikkael A.S., Nielsen A.D., Jha B., Przychodzen B., Aly M., Carraway H.E., Advani A.S., Patel B., Clemente M.J., et al. TP53 Mutations and Outcome in Patients with Myelodysplastic Syndromes (MDS) Blood. 2016;128:4336. doi: 10.1182/blood.V128.22.4336.4336. DOI
Takahashi K., Patel K., Bueso-Ramos C., Zhang J., Gumbs C., Jabbour E., Kadia T., Andreff M., Konopleva M., DiNardo C., et al. Clinical Implications of TP53 Mutations in Myelodysplastic Syndromes Treated with Hypomethylating Agents. Oncotarget. 2016;7:14172–14187. doi: 10.18632/oncotarget.7290. PubMed DOI PMC
DiNardo C.D., Patel K.P., Garcia-Manero G., Luthra R., Pierce S., Borthakur G., Jabbour E., Kadia T., Pemmaraju N., Konopleva M., et al. Lack of Association of IDH1, IDH2 and DNMT3A Mutations with Outcome in Older Patients with Acute Myeloid Leukemia Treated with Hypomethylating Agents. Leuk. Lymphoma. 2014;55:1925–1929. doi: 10.3109/10428194.2013.855309. PubMed DOI PMC
Voso M.T., Santini V., Fabiani E., Fianchi L., Criscuolo M., Falconi G., Guidi F., Hohaus S., Leone G. Why Methylation Is Not a Marker Predictive of Response to Hypomethylating Agents. Haematologica. 2014;99:613–619. doi: 10.3324/haematol.2013.099549. PubMed DOI PMC
Treppendahl M.B., Kristensen L.S., Grønbæk K. Predicting Response to Epigenetic Therapy. J. Clin. Investig. 2014;124:47–55. doi: 10.1172/JCI69737. PubMed DOI PMC
Wang H., Li Y., Lv N., Li Y., Wang L., Yu L. Predictors of Clinical Responses to Hypomethylating Agents in Acute Myeloid Leukemia or Myelodysplastic Syndromes. Ann. Hematol. 2018;97:2025–2038. doi: 10.1007/s00277-018-3464-9. PubMed DOI
Oellerich T., Schneider C., Thomas D., Knecht K.M., Buzovetsky O., Kaderali L., Schliemann C., Bohnenberger H., Angenendt L., Hartmann W., et al. Selective Inactivation of Hypomethylating Agents by SAMHD1 Provides a Rationale for Therapeutic Stratification in AML. Nat. Commun. 2019;10:3475. doi: 10.1038/s41467-019-11413-4. PubMed DOI PMC
Gu X., Tohme R., Tomlinson B., Sakre N., Hasipek M., Durkin L., Schuerger C., Grabowski D., Zidan A.M., Radivoyevitch T., et al. Decitabine- and 5-Azacytidine Resistance Emerges from Adaptive Responses of the Pyrimidine Metabolism Network. Leukemia. 2020;35:1023–1036. doi: 10.1038/s41375-020-1003-x. PubMed DOI PMC
Diesch J., Zwick A., Garz A.-K., Palau A., Buschbeck M., Götze K.S. A Clinical-Molecular Update on Azanucleoside-Based Therapy for the Treatment of Hematologic Cancers. Clin. Epigenetics. 2016;8:71. doi: 10.1186/s13148-016-0237-y. PubMed DOI PMC
Daver N., Boddu P., Garcia-Manero G., Yadav S.S., Sharma P., Allison J., Kantarjian H. Hypomethylating Agents in Combination with Immune Checkpoint Inhibitors in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Leukemia. 2018;32:1094–1105. doi: 10.1038/s41375-018-0070-8. PubMed DOI PMC
DiNardo C.D., Pratz K., Pullarkat V., Jonas B.A., Arellano M., Becker P.S., Frankfurt O., Konopleva M., Wei A.H., Kantarjian H.M., et al. Venetoclax Combined with Decitabine or Azacitidine in Treatment-Naive, Elderly Patients with Acute Myeloid Leukemia. Blood. 2019;133:7–17. doi: 10.1182/blood-2018-08-868752. PubMed DOI PMC
Garcia-Manero G., Kazmierczak M., Fong C.Y., Montesinos P., Venditti A., Mappa S., Spezia R., Adès L. A Phase 3 Randomized Study (PRIMULA) of the Epigenetic Combination of Pracinostat, a Pan-Histone Deacetylase (HDAC) Inhibitor, with Azacitidine (AZA) in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) Unfit for Standard Intensive Chemotherapy (IC) Blood. 2019;134:2652.
Pericole F.V., Lazarini M., de Paiva L.B., da Silva Santos Duarte A., Vieira Ferro K.P., Niemann F.S., Roversi F.M., Olalla Saad S.T. BRD4 Inhibition Enhances Azacitidine Efficacy in Acute Myeloid Leukemia and Myelodysplastic Syndromes. Front. Oncol. 2019;9:16. doi: 10.3389/fonc.2019.00016. PubMed DOI PMC
Yalniz F.F., Berdeja J.G., Maris M.B., Lyons R.M., Reeves J.A., Essell J.H., Patel P., Sekeres M., Hughes A., Mappa S., et al. A Phase II Study of Addition of Pracinostat to a Hypomethylating Agent in Patients with Myelodysplastic Syndromes Who Have Not Responded to Previous Hypomethylating Agent Therapy. Br. J. Haematol. 2020;188:404–412. doi: 10.1111/bjh.16173. PubMed DOI
Cheng Y., He C., Wang M., Ma X., Mo F., Yang S., Han J., Wei X. Targeting Epigenetic Regulators for Cancer Therapy: Mechanisms and Advances in Clinical Trials. Signal. Transduct. Target. Ther. 2019;4:62. doi: 10.1038/s41392-019-0095-0. PubMed DOI PMC
Pan D., Rampal R., Mascarenhas J. Clinical Developments in Epigenetic-Directed Therapies in Acute Myeloid Leukemia. Blood Adv. 2020;4:970–982. doi: 10.1182/bloodadvances.2019001245. PubMed DOI PMC
Belickova M., Merkerova Dostálová M.D., Votavova H., Valka J., Vesela J., Pejsova B., Hajkova H., Klema J., Cermak J., Jonasova A. Up-Regulation of Ribosomal Genes Is Associated with a Poor Response to Azacitidine in Myelodysplasia and Related Neoplasms. Int. J. Hematol. 2016;104:566–573. doi: 10.1007/s12185-016-2058-3. PubMed DOI
Lübbert M., Ihorst G., Sander P.N., Bogatyreva L., Becker H., Wijermans P.W., Suciu S., Bissé E., Claus R. Elevated Fetal Haemoglobin Is a Predictor of Better Outcome in MDS/AML Patients Receiving 5-Aza-2′-Deoxycytidine (Decitabine) Br. J. Haematol. 2017;176:609–617. doi: 10.1111/bjh.14463. PubMed DOI
Unnikrishnan A., Papaemmanuil E., Beck D., Deshpande N.P., Verma A., Kumari A., Woll P.S., Richards L.A., Knezevic K., Chandrakanthan V., et al. Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes. Cell Rep. 2017;20:572–585. doi: 10.1016/j.celrep.2017.06.067. PubMed DOI
Gruber E., Franich R.L., Shortt J., Johnstone R.W., Kats L.M. Distinct and Overlapping Mechanisms of Resistance to Azacytidine and Guadecitabine in Acute Myeloid Leukemia. Leukemia. 2020;34:3388–3392. doi: 10.1038/s41375-020-0973-z. PubMed DOI
Herwig R., Hardt C., Lienhard M., Kamburov A. Analyzing and Interpreting Genome Data at the Network Level with ConsensusPathDB. Nat. Protoc. 2016;11:1889–1907. doi: 10.1038/nprot.2016.117. PubMed DOI
Ali A., Penneroux J., Dal Bello R., Massé A., Quentin S., Unnikrishnan A., Hernandez L., Raffoux E., Ben Abdelali R., Renneville A., et al. Granulomonocytic Progenitors Are Key Target Cells of Azacytidine in Higher Risk Myelodysplastic Syndromes and Acute Myeloid Leukemia. Leukemia. 2018;32:1856–1860. doi: 10.1038/s41375-018-0076-2. PubMed DOI
Beerman I., Seita J., Inlay M.A., Weissman I.L., Rossi D.J. Quiescent Hematopoietic Stem Cells Accumulate DNA Damage during Aging That Is Repaired upon Entry into Cell Cycle. Cell Stem Cell. 2014;15:37–50. doi: 10.1016/j.stem.2014.04.016. PubMed DOI PMC
Pearl L.H., Schierz A.C., Ward S.E., Al-Lazikani B., Pearl F.M.G. Therapeutic Opportunities within the DNA Damage Response. Nat. Rev. Cancer. 2015;15:166–180. doi: 10.1038/nrc3891. PubMed DOI
Nabatiyan A., Szüts D., Krude T. Induction of CAF-1 Expression in Response to DNA Strand Breaks in Quiescent Human Cells. Mol. Cell. Biol. 2006;26:1839–1849. doi: 10.1128/MCB.26.5.1839-1849.2006. PubMed DOI PMC
Vitale I., Manic G., De Maria R., Kroemer G., Galluzzi L. DNA Damage in Stem Cells. Mol. Cell. 2017;66:306–319. doi: 10.1016/j.molcel.2017.04.006. PubMed DOI
Shin J.J., Schröder M.S., Caiado F., Wyman S.K., Bray N.L., Bordi M., Dewitt M.A., Vu J.T., Kim W.-T., Hockemeyer D., et al. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells. Cell Rep. 2020;32:108093. doi: 10.1016/j.celrep.2020.108093. PubMed DOI PMC
Stevens B.M., Khan N., D’Alessandro A., Nemkov T., Winters A., Jones C.L., Zhang W., Pollyea D.A., Jordan C.T. Characterization and Targeting of Malignant Stem Cells in Patients with Advanced Myelodysplastic Syndromes. Nat. Commun. 2018;9:3694. doi: 10.1038/s41467-018-05984-x. PubMed DOI PMC
Guo B., Zhai D., Cabezas E., Welsh K., Nouraini S., Satterthwait A.C., Reed J.C. Humanin Peptide Suppresses Apoptosis by Interfering with Bax Activation. Nature. 2003;423:456–461. doi: 10.1038/nature01627. PubMed DOI
Sun D., Luo M., Jeong M., Rodriguez B., Xia Z., Hannah R., Wang H., Le T., Faull K.F., Chen R., et al. Epigenomic Profiling of Young and Aged HSCs Reveals Concerted Changes during Aging That Reinforce Self-Renewal. Cell Stem Cell. 2014;14:673–688. doi: 10.1016/j.stem.2014.03.002. PubMed DOI PMC
Cabezas-Wallscheid N., Klimmeck D., Hansson J., Lipka D.B., Reyes A., Wang Q., Weichenhan D., Lier A., von Paleske L., Renders S., et al. Identification of Regulatory Networks in HSCs and Their Immediate Progeny via Integrated Proteome, Transcriptome, and DNA Methylome Analysis. Cell Stem Cell. 2014;15:507–522. doi: 10.1016/j.stem.2014.07.005. PubMed DOI
Poloni A., Goteri G., Zizzi A., Serrani F., Trappolini S., Costantini B., Mariani M., Olivieri A., Catarini M., Centurioni R., et al. Prognostic Role of Immunohistochemical Analysis of 5 Mc in Myelodysplastic Syndromes. Eur. J. Haematol. 2013;91:219–227. doi: 10.1111/ejh.12145. PubMed DOI
Gawlitza A.L., Speith J., Rinke J., Sajzew R., Müller E.K., Schäfer V., Hochhaus A., Ernst T. 5-Azacytidine Modulates CpG Methylation Levels of EZH2 and NOTCH1 in Myelodysplastic Syndromes. J. Cancer Res. Clin. Oncol. 2019;145:2835–2843. doi: 10.1007/s00432-019-03016-9. PubMed DOI
Grövdal M., Karimi M., Tobiasson M., Reinius L., Jansson M., Ekwall K., Ungerstedt J., Kere J., Greco D., Hellström-Lindberg E. Azacitidine Induces Profound Genome-Wide Hypomethylation in Primary Myelodysplastic Bone Marrow Cultures but May Also Reduce Histone Acetylation. Leukemia. 2014;28:411–413. doi: 10.1038/leu.2013.265. PubMed DOI
Tobiasson M., Abdulkadir H., Lennartsson A., Katayama S., Marabita F., Paepe A.D., Karimi M., Krjutskov K., Einarsdottir E., Grövdal M., et al. Comprehensive Mapping of the Effects of Azacitidine on DNA Methylation, Repressive/Permissive Histone Marks and Gene Expression in Primary Cells from Patients with MDS and MDS-Related Disease. Oncotarget. 2017;8:28812–28825. doi: 10.18632/oncotarget.15807. PubMed DOI PMC
Kuendgen A., Müller-Thomas C., Lauseker M., Haferlach T., Urbaniak P., Schroeder T., Brings C., Wulfert M., Meggendorfer M., Hildebrandt B., et al. Efficacy of Azacitidine Is Independent of Molecular and Clinical Characteristics—An Analysis of 128 Patients with Myelodysplastic Syndromes or Acute Myeloid Leukemia and a Review of the Literature. Oncotarget. 2018;9:27882–27894. doi: 10.18632/oncotarget.25328. PubMed DOI PMC
Yu J., Li Y., Li T., Li Y., Xing H., Sun H., Sun L., Wan D., Liu Y., Xie X., et al. Gene Mutational Analysis by NGS and Its Clinical Significance in Patients with Myelodysplastic Syndrome and Acute Myeloid Leukemia. Exp. Hematol. Oncol. 2020;9:2. doi: 10.1186/s40164-019-0158-5. PubMed DOI PMC
Reid M.A., Dai Z., Locasale J.W. The Impact of Cellular Metabolism on Chromatin Dynamics and Epigenetics. Nat. Cell Biol. 2017;19:1298–1306. doi: 10.1038/ncb3629. PubMed DOI PMC
Pollyea D.A., Stevens B.M., Jones C.L., Winters A., Pei S., Minhajuddin M., D’Alessandro A., Culp-Hill R., Riemondy K.A., Gillen A.E., et al. Venetoclax with Azacitidine Disrupts Energy Metabolism and Targets Leukemia Stem Cells in Patients with Acute Myeloid Leukemia. Nat. Med. 2018;24:1859–1866. doi: 10.1038/s41591-018-0233-1. PubMed DOI PMC
Coller H.A. The Paradox of Metabolism in Quiescent Stem Cells. FEBS Lett. 2019;593:2817–2839. doi: 10.1002/1873-3468.13608. PubMed DOI PMC
Nakamura-Ishizu A., Ito K., Suda T. Hematopoietic Stem Cell Metabolism during Development and Aging. Dev. Cell. 2020;54:239–255. doi: 10.1016/j.devcel.2020.06.029. PubMed DOI PMC
Raffel S., Falcone M., Kneisel N., Hansson J., Wang W., Lutz C., Bullinger L., Poschet G., Nonnenmacher Y., Barnert A., et al. BCAT1 Restricts AKG Levels in AML Stem Cells Leading to IDHmut-like DNA Hypermethylation. Nature. 2017;551:384–388. doi: 10.1038/nature24294. PubMed DOI
Rashkovan M., Ferrando A. Metabolic Dependencies and Vulnerabilities in Leukemia. Genes Dev. 2019;33:1460–1474. doi: 10.1101/gad.326470.119. PubMed DOI PMC
Kinnaird A., Zhao S., Wellen K.E., Michelakis E.D. Metabolic Control of Epigenetics in Cancer. Nat. Rev. Cancer. 2016;16:694–707. doi: 10.1038/nrc.2016.82. PubMed DOI
Etchegaray J.-P., Mostoslavsky R. Interplay between Metabolism and Epigenetics: A Nuclear Adaptation to Environmental Changes. Mol. Cell. 2016;62:695–711. doi: 10.1016/j.molcel.2016.05.029. PubMed DOI PMC
Wellen K.E., Hatzivassiliou G., Sachdeva U.M., Bui T.V., Cross J.R., Thompson C.B. ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation. Science. 2009;324:1076–1080. doi: 10.1126/science.1164097. PubMed DOI PMC
Ghoshal K., Datta J., Majumder S., Bai S., Kutay H., Motiwala T., Jacob S.T. 5-Aza-Deoxycytidine Induces Selective Degradation of DNA Methyltransferase 1 by a Proteasomal Pathway That Requires the KEN Box, Bromo-Adjacent Homology Domain, and Nuclear Localization Signal. Mol. Cell. Biol. 2005;25:4727–4741. doi: 10.1128/MCB.25.11.4727-4741.2005. PubMed DOI PMC
Issa J.-P.J., Kantarjian H.M. Targeting DNA Methylation. Clin. Cancer Res. 2009;15:3938–3946. doi: 10.1158/1078-0432.CCR-08-2783. PubMed DOI PMC
Solly F., Koering C., Mohamed A.M., Maucort-Boulch D., Robert G., Auberger P., Flandrin-Gresta P., Adès L., Fenaux P., Kosmider O., et al. An MiRNA–DNMT1 Axis Is Involved in Azacitidine Resistance and Predicts Survival in Higher-Risk Myelodysplastic Syndrome and Low Blast Count Acute Myeloid Leukemia. Clin. Cancer Res. 2017;23:3025–3034. doi: 10.1158/1078-0432.CCR-16-2304. PubMed DOI
Vispé S., Deroide A., Davoine E., Desjobert C., Lestienne F., Fournier L., Novosad N., Bréand S., Besse J., Busato F., et al. Consequences of Combining SiRNA-Mediated DNA Methyltransferase 1 Depletion with 5-Aza-2′-Deoxycytidine in Human Leukemic KG1 Cells. Oncotarget. 2015;6:15265–15282. doi: 10.18632/oncotarget.3317. PubMed DOI PMC
Kimura H. Transcription of Mouse DNA Methyltransferase 1 (Dnmt1) Is Regulated by Both E2F-Rb-HDAC-Dependent and -Independent Pathways. Nucleic Acids Res. 2003;31:3101–3113. doi: 10.1093/nar/gkg406. PubMed DOI PMC
Singh V., Sharma P., Capalash N. DNA Methyltransferase-1 Inhibitors as Epigenetic Therapy for Cancer. Curr. Cancer Drug Targets. 2013;13:379–399. doi: 10.2174/15680096113139990077. PubMed DOI
Wong K.K., Lawrie C.H., Green T.M. Oncogenic Roles and Inhibitors of DNMT1, DNMT3A, and DNMT3B in Acute Myeloid Leukaemia. Biomark Insights. 2019;14:117727191984645. doi: 10.1177/1177271919846454. PubMed DOI PMC
Daugas E., Nochy D., Ravagnan L., Loeffler M., Susin S.A., Zamzami N., Kroemer G. Apoptosis-Inducing Factor (AIF): A Ubiquitous Mitochondrial Oxidoreductase Involved in Apoptosis. FEBS Lett. 2000;476:118–123. doi: 10.1016/S0014-5793(00)01731-2. PubMed DOI
Vaquero A., Scher M., Lee D., Erdjument-Bromage H., Tempst P., Reinberg D. Human SirT1 Interacts with Histone H1 and Promotes Formation of Facultative Heterochromatin. Mol. Cell. 2004;16:93–105. doi: 10.1016/j.molcel.2004.08.031. PubMed DOI
Baur A.S., Meugé-Moraw C., Schmidt P.-M., Parlier V., Jotterand M., Delacrétaz F. CD34/QBEND10 Immunostaining in Bone Marrow Biopsies: An Additional Parameterfor the Diagnosis and Classification of Myelodysplastic Syndromes: CD34 in Myelodysplastic Syndromes. Eur. J. Haematol. 2000;64:71–79. doi: 10.1034/j.1600-0609.2000.90047.x. PubMed DOI
Pollyea D.A., Jordan C.T. Therapeutic Targeting of Acute Myeloid Leukemia Stem Cells. Blood. 2017;129:1627–1635. doi: 10.1182/blood-2016-10-696039. PubMed DOI
Thomas D., Majeti R. Biology and Relevance of Human Acute Myeloid Leukemia Stem Cells. Blood. 2017;129:1577–1585. doi: 10.1182/blood-2016-10-696054. PubMed DOI PMC
Will B., Zhou L., Vogler T.O., Ben-Neriah S., Schinke C., Tamari R., Yu Y., Bhagat T.D., Bhattacharyya S., Barreyro L., et al. Stem and Progenitor Cells in Myelodysplastic Syndromes Show Aberrant Stage-Specific Expansion and Harbor Genetic and Epigenetic Alterations. Blood. 2012;120:2076–2086. doi: 10.1182/blood-2011-12-399683. PubMed DOI PMC
Chen J., Kao Y.-R., Sun D., Todorova T.I., Reynolds D., Narayanagari S.-R., Montagna C., Will B., Verma A., Steidl U. Myelodysplastic Syndrome Progression to Acute Myeloid Leukemia at the Stem Cell Level. Nat. Med. 2019;25:103–110. doi: 10.1038/s41591-018-0267-4. PubMed DOI PMC
Shastri A., Will B., Steidl U., Verma A. Stem and Progenitor Cell Alterations in Myelodysplastic Syndromes. Blood. 2017;129:1586–1594. doi: 10.1182/blood-2016-10-696062. PubMed DOI PMC
Mejia-Ramirez E., Florian M.C. Understanding Intrinsic Hematopoietic Stem Cell Aging. Haematologica. 2020;105:22–37. doi: 10.3324/haematol.2018.211342. PubMed DOI PMC
Huang H., Xu C., Gao J., Li B., Qin T., Xu Z., Ren S., Zhang Y., Jiao M., Qu S., et al. Severe Ineffective Erythropoiesis Discriminates Prognosis in Myelodysplastic Syndromes: Analysis Based on 776 Patients from a Single Centre. Blood Cancer J. 2020;10:83. doi: 10.1038/s41408-020-00349-4. PubMed DOI PMC
Sancho M., Diani E., Beato M., Jordan A. Depletion of Human Histone H1 Variants Uncovers Specific Roles in Gene Expression and Cell Growth. PLoS Genet. 2008;4:e1000227. doi: 10.1371/journal.pgen.1000227. PubMed DOI PMC
Hakimi A.A., Reznik E., Lee C.-H., Creighton C.J., Brannon A.R., Luna A., Aksoy B.A., Liu E.M., Shen R., Lee W., et al. An Integrated Metabolic Atlas of Clear Cell Renal Cell Carcinoma. Cancer Cell. 2016;29:104–116. doi: 10.1016/j.ccell.2015.12.004. PubMed DOI PMC
Rist M.J., Roth A., Frommherz L., Weinert C.H., Krüger R., Merz B., Bunzel D., Mack C., Egert B., Bub A., et al. Metabolite Patterns Predicting Sex and Age in Participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) Study. PLoS ONE. 2017;12:e0183228. doi: 10.1371/journal.pone.0183228. PubMed DOI PMC
Krumsiek J., Mittelstrass K., Do K.T., Stückler F., Ried J., Adamski J., Peters A., Illig T., Kronenberg F., Friedrich N., et al. Gender-Specific Pathway Differences in the Human Serum Metabolome. Metabolomics. 2015;11:1815–1833. doi: 10.1007/s11306-015-0829-0. PubMed DOI PMC
Vignoli A., Tenori L., Luchinat C., Saccenti E. Age and Sex Effects on Plasma Metabolite Association Networks in Healthy Subjects. J. Proteome Res. 2018;17:97–107. doi: 10.1021/acs.jproteome.7b00404. PubMed DOI
Schvartzman J.M., Thompson C.B., Finley L.W.S. Metabolic Regulation of Chromatin Modifications and Gene Expression. J. Cell Biol. 2018;217:2247–2259. doi: 10.1083/jcb.201803061. PubMed DOI PMC
Diehl K.L., Muir T.W. Chromatin as a Key Consumer in the Metabolite Economy. Nat. Chem. Biol. 2020;16:620–629. doi: 10.1038/s41589-020-0517-x. PubMed DOI PMC
Beisel C., Paro R. Silencing Chromatin: Comparing Modes and Mechanisms. Nat. Rev. Genet. 2011;12:123–135. doi: 10.1038/nrg2932. PubMed DOI
Toffalorio F., Santarpia M., Radice D., Jaramillo C.A., Spitaleri G., Manzotti M., Catania C., Jordheim L.P., Pelosi G., Peters G.J., et al. 5′-Nucleotidase CN-II Emerges as a New Predictive Biomarker of Response to Gemcitabine/Platinum Combination Chemotherapy in Non-Small Cell Lung Cancer. Oncotarget. 2018;9:16437–16450. doi: 10.18632/oncotarget.24505. PubMed DOI PMC
Quagliano A., Gopalakrishnapillai A., Barwe S.P. Understanding the Mechanisms by Which Epigenetic Modifiers Avert Therapy Resistance in Cancer. Front. Oncol. 2020;10:992. doi: 10.3389/fonc.2020.00992. PubMed DOI PMC
Cameron E.E., Bachman K.E., Myöhänen S., Herman J.G., Baylin S.B. Synergy of Demethylation and Histone Deacetylase Inhibition in the Re-Expression of Genes Silenced in Cancer. Nat. Genet. 1999;21:103–107. doi: 10.1038/5047. PubMed DOI
Zhang B., Strauss A.C., Chu S., Li M., Ho Y., Shiang K.-D., Snyder D.S., Huettner C.S., Shultz L., Holyoake T., et al. Effective Targeting of Quiescent Chronic Myelogenous Leukemia Stem Cells by Histone Deacetylase Inhibitors in Combination with Imatinib Mesylate. Cancer Cell. 2010;17:427–442. doi: 10.1016/j.ccr.2010.03.011. PubMed DOI PMC
Kovaka S., Zimin A.V., Pertea G.M., Razaghi R., Salzberg S.L., Pertea M. Transcriptome Assembly from Long-Read RNA-Seq Alignments with StringTie2. Genome Biol. 2019;20:278. doi: 10.1186/s13059-019-1910-1. PubMed DOI PMC
Babicki S., Arndt D., Marcu A., Liang Y., Grant J.R., Maciejewski A., Wishart D.S. Heatmapper: Web-Enabled Heat Mapping for All. Nucleic Acids Res. 2016;44:W147–W153. doi: 10.1093/nar/gkw419. PubMed DOI PMC
Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/pnas.0506580102. PubMed DOI PMC
Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M.J., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood. 2016;127:2391–2405. doi: 10.1182/blood-2016-03-643544. PubMed DOI
Cheson B.D. Clinical Application and Proposal for Modification of the International Working Group (IWG) Response Criteria in Myelodysplasia. Blood. 2006;108:419–425. doi: 10.1182/blood-2005-10-4149. PubMed DOI