Grouting below Subterranean Water: Erosional Stability Test

. 2021 Apr 30 ; 14 (9) : . [epub] 20210430

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33946258

Grantová podpora
FR-TI4/261 Ministerstvo Průmyslu a Obchodu
LO1408 Ministerstvo Školství, Mládeže a Tělovýchovy

The article is focused on the medium-term negative effect of groundwater on the underground grout elements. This is the physical-mechanical effect of groundwater, which is known as erosion. We conduct a laboratory verification of the erosional resistance of grout mixtures. A new test apparatus was designed and developed, since there is no standardized method for testing at present. An erosion stability test of grout mixtures and the technical solutions of the apparatus for the test's implementation are described. This apparatus was subsequently used for the experimental evaluation of the erosional stability of silicate grout mixtures. Grout mixtures with activated and non-activated bentonite are tested. The stabilizing effect of cellulose relative to erosion stability has been also investigated. The specimens of grout mixtures are exposed to flowing water stress for a certain period of time. The erosional stabilities of the grout mixtures are assessed on the basis of weight loss (WL) as a percentage of initial specimen weight. The lower the grout mixture weight loss, the higher its erosional stability and vice versa.

Zobrazit více v PubMed

Verfel J. Injektování Hornin a Výstavba Podzemních Stěn [Rock Grouting and Diaphragm Wall Construction] MÚS Bradlo; Bratislava, Czech Republic: 1992. p. 551. (In Czech)

Warner J. Practical Handbook of Grouting: Soil, Rock, and Structures. John Wiley & Sons; Hoboken, NJ, USA: 2004.

Baluch K., Baluch S., Yang H.-S., Kim J.-G., Kim J.-G., Qaisrani S. Non-Dispersive Anti-Washout Grout Design Based on Geotechnical Experimentation for Application in Subsidence-Prone Underwater Karstic Formations. Materials. 2021;14:1587. doi: 10.3390/ma14071587. PubMed DOI PMC

Benahmed N., Bonelli S. Investigating Concentrated Leak Erosion Behaviour of Cohesive Soils by Performing Hole Erosion Tests. Eur. J. Environ. Civ. Eng. 2012;16:43–58. doi: 10.1080/19648189.2012.667667. DOI

Liang Y., Yeh T.-C.J., Ma C., Zhang J., Xu W., Yang D., Hao Y. Experimental Investigation on Hole Erosion Behaviors of Chemical Stabilizer Treated Soil. J. Hydrol. 2020:125647. doi: 10.1016/j.jhydrol.2020.125647. DOI

Wang H., Liu Q., Sun S., Zhang Q., Li Z., Zhang P. Damage Model and Experimental Study of a Sand Grouting-Reinforced Body in a Seawater Environment. Water. 2020;12:2495. doi: 10.3390/w12092495. DOI

Arulanandan K., Perry E.B. Erosion in Relation to Filter Design Criteria in Earth Dams. J. Geotech. Eng. 1983;109:682–698. doi: 10.1061/(ASCE)0733-9410(1983)109:5(682). DOI

Terzaghi K., Peck R.B., Mesri G. Soil Mechanics in Engineering Practice. 3rd ed. John Wiley & Sons, Inc.; New York, NY, USA: Chichester, UK: 1996. pp. 549, 592.

Suits L.D., Sheahan T., Wan C., Fell R. Laboratory Tests on the Rate of Piping Erosion of Soils in Embankment Dams. Geotech. Test. J. 2004;27:1–9. doi: 10.1520/gtj11903. DOI

Wan C.F., Fell R. Investigation of Rate of Erosion of Soils in Embankment Dams. J. Geotech. Geoenviron. Eng. 2004;130:373–380. doi: 10.1061/(ASCE)1090-0241(2004)130:4(373). DOI

Moore W.L., Masch F.D. Experiments on the Scour Resistance of Cohesive Sediments. J. Geophys. Res. Space Phys. 1962;67:1437–1446. doi: 10.1029/JZ067i004p01437. DOI

Arulanandan K., Gillogley E., Tully R. Development of a Quantitative Method to Predict Critical Shear Stress and Rate of Erosion of Natural Undisturbed Cohesive Soils (Technical Report GL-80-5) University of California; Davis, CA, USA: 1980. p. 99.

Lefebvre G., Rohan K., Douville S. Erosivity of Natural Intact Structured Clay: Evaluation. Can. Geotech. J. 1985;22:508–517. doi: 10.1139/t85-071. DOI

Drnevich V., Rohan K., Lefèbvre G., Douville S., Milette J.-P. A New Technique to Evaluate Erosivity of Cohesive Material. Geotech. Test. J. 1986;9:87. doi: 10.1520/GTJ11034J. DOI

Briaud J.L., Ting F.C.K., Chen H.C., Cao Y., Han S.W., Kwak K.W. Erosion Function Apparatus for Scour Rate Predictions. J. Geotech. Geoenviron. Eng. 2001;127:105–113. doi: 10.1061/(ASCE)1090-0241(2001)127:2(105). DOI

Hanson G.J., Cook K.R. Apparatus, Test Procedures, and Analytical Methods to Measure Soil Erodibility in Situ. Appl. Eng. Agric. 2004;20:455–462. doi: 10.13031/2013.16492. DOI

Shugar D., Kostaschuk R., Ashmore P., Desloges J., Burge L. In Situ Jet-Testing of the Erosional Resistance of Cohesive Streambeds. Can. J. Civ. Eng. 2007;34:1192–1195. doi: 10.1139/l07-024. DOI

Mahalder B., Schwartz J.S., Palomino A.M., Zirkle J. Estimating Erodibility Parameters for Streambanks with Cohesive Soils Using the Mini Jet Test Device: A Comparison of Field and Computational Methods. Water. 2018;10:304. doi: 10.3390/w10030304. DOI

Regazzoni P.-L., Marot D. Investigation of Interface Erosion Rate by Jet Erosion Test and Statistical Analysis. Eur. J. Environ. Civ. Eng. 2011;15:1167–1185. doi: 10.1080/19648189.2011.9714847. DOI

Sanchez R.L., Strutynsky A.I., Silver M.L. Evaluation of the Erosion Potential of Embankment Core Materials using the Laboratory Tri-Axial Erosion Test Procedure (Technical Report GL-83-4) Army Engineers Waterways Experiment Station; Viksburg, MS, USA: 1983. p. 335.

Bendahmane F., Marot D., Rosquoet F., Alexis A. Characterization of Internal Erosion in Sand Kaolin Soils. Revue Eur. De Génie Civ. 2006;10:505–520. doi: 10.1080/17747120.2006.9692841. DOI

Bendahmane F., Marot D., Alexis A. Experimental Parametric Study of Suffusion and Backward Erosion. J. Geotech. Geoenviron. Eng. 2008;134:57–67. doi: 10.1061/(ASCE)1090-0241(2008)134:1(57). DOI

Suits L.D., Sheahan T.C., Richards K.S., Reddy K.R. True Triaxial Piping Test Apparatus for Evaluation of Piping Potential in Earth Structures. Geotech. Test. J. 2010;33:1–13. doi: 10.1520/GTJ102246. DOI

Monnet J., Plé O., Nguyen D.M., Plotto P. A New Test for the Characterization of Suffusion into Embankment and Dam; Proceedings of the 6th International Conference on Scour and Erosion (ICSE-6); Paris, France. 27–31 August 2012; pp. 1073–1080.

Monnet J., Plé O., Nguyen D.M., Plotto P. In: Characterization of the Susceptibility of the Soils to Internal Erosion, In Geotechnical and Geophysical Site Characterization 4. 1st ed. Coutinho R.Q., Mayne P.W., editors. Taylor & Francis Group; London, UK: 2013. pp. 765–770.

ÖNORM B 4452 . Erd-Und Grundbau Dichtwände im Untergrund [Geotechnical Engineering/Foundation Engineering—Cut-off Walls] Österreichisches Normungsinstitut; Wien, Austria: 1998. (In German)

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...