Grouting below Subterranean Water: Erosional Stability Test
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FR-TI4/261
Ministerstvo Průmyslu a Obchodu
LO1408
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33946258
PubMed Central
PMC8124796
DOI
10.3390/ma14092333
PII: ma14092333
Knihovny.cz E-zdroje
- Klíčová slova
- erosional stability, groundwater, grout mixtures, laboratory testing, test apparatus,
- Publikační typ
- časopisecké články MeSH
The article is focused on the medium-term negative effect of groundwater on the underground grout elements. This is the physical-mechanical effect of groundwater, which is known as erosion. We conduct a laboratory verification of the erosional resistance of grout mixtures. A new test apparatus was designed and developed, since there is no standardized method for testing at present. An erosion stability test of grout mixtures and the technical solutions of the apparatus for the test's implementation are described. This apparatus was subsequently used for the experimental evaluation of the erosional stability of silicate grout mixtures. Grout mixtures with activated and non-activated bentonite are tested. The stabilizing effect of cellulose relative to erosion stability has been also investigated. The specimens of grout mixtures are exposed to flowing water stress for a certain period of time. The erosional stabilities of the grout mixtures are assessed on the basis of weight loss (WL) as a percentage of initial specimen weight. The lower the grout mixture weight loss, the higher its erosional stability and vice versa.
Zobrazit více v PubMed
Verfel J. Injektování Hornin a Výstavba Podzemních Stěn [Rock Grouting and Diaphragm Wall Construction] MÚS Bradlo; Bratislava, Czech Republic: 1992. p. 551. (In Czech)
Warner J. Practical Handbook of Grouting: Soil, Rock, and Structures. John Wiley & Sons; Hoboken, NJ, USA: 2004.
Baluch K., Baluch S., Yang H.-S., Kim J.-G., Kim J.-G., Qaisrani S. Non-Dispersive Anti-Washout Grout Design Based on Geotechnical Experimentation for Application in Subsidence-Prone Underwater Karstic Formations. Materials. 2021;14:1587. doi: 10.3390/ma14071587. PubMed DOI PMC
Benahmed N., Bonelli S. Investigating Concentrated Leak Erosion Behaviour of Cohesive Soils by Performing Hole Erosion Tests. Eur. J. Environ. Civ. Eng. 2012;16:43–58. doi: 10.1080/19648189.2012.667667. DOI
Liang Y., Yeh T.-C.J., Ma C., Zhang J., Xu W., Yang D., Hao Y. Experimental Investigation on Hole Erosion Behaviors of Chemical Stabilizer Treated Soil. J. Hydrol. 2020:125647. doi: 10.1016/j.jhydrol.2020.125647. DOI
Wang H., Liu Q., Sun S., Zhang Q., Li Z., Zhang P. Damage Model and Experimental Study of a Sand Grouting-Reinforced Body in a Seawater Environment. Water. 2020;12:2495. doi: 10.3390/w12092495. DOI
Arulanandan K., Perry E.B. Erosion in Relation to Filter Design Criteria in Earth Dams. J. Geotech. Eng. 1983;109:682–698. doi: 10.1061/(ASCE)0733-9410(1983)109:5(682). DOI
Terzaghi K., Peck R.B., Mesri G. Soil Mechanics in Engineering Practice. 3rd ed. John Wiley & Sons, Inc.; New York, NY, USA: Chichester, UK: 1996. pp. 549, 592.
Suits L.D., Sheahan T., Wan C., Fell R. Laboratory Tests on the Rate of Piping Erosion of Soils in Embankment Dams. Geotech. Test. J. 2004;27:1–9. doi: 10.1520/gtj11903. DOI
Wan C.F., Fell R. Investigation of Rate of Erosion of Soils in Embankment Dams. J. Geotech. Geoenviron. Eng. 2004;130:373–380. doi: 10.1061/(ASCE)1090-0241(2004)130:4(373). DOI
Moore W.L., Masch F.D. Experiments on the Scour Resistance of Cohesive Sediments. J. Geophys. Res. Space Phys. 1962;67:1437–1446. doi: 10.1029/JZ067i004p01437. DOI
Arulanandan K., Gillogley E., Tully R. Development of a Quantitative Method to Predict Critical Shear Stress and Rate of Erosion of Natural Undisturbed Cohesive Soils (Technical Report GL-80-5) University of California; Davis, CA, USA: 1980. p. 99.
Lefebvre G., Rohan K., Douville S. Erosivity of Natural Intact Structured Clay: Evaluation. Can. Geotech. J. 1985;22:508–517. doi: 10.1139/t85-071. DOI
Drnevich V., Rohan K., Lefèbvre G., Douville S., Milette J.-P. A New Technique to Evaluate Erosivity of Cohesive Material. Geotech. Test. J. 1986;9:87. doi: 10.1520/GTJ11034J. DOI
Briaud J.L., Ting F.C.K., Chen H.C., Cao Y., Han S.W., Kwak K.W. Erosion Function Apparatus for Scour Rate Predictions. J. Geotech. Geoenviron. Eng. 2001;127:105–113. doi: 10.1061/(ASCE)1090-0241(2001)127:2(105). DOI
Hanson G.J., Cook K.R. Apparatus, Test Procedures, and Analytical Methods to Measure Soil Erodibility in Situ. Appl. Eng. Agric. 2004;20:455–462. doi: 10.13031/2013.16492. DOI
Shugar D., Kostaschuk R., Ashmore P., Desloges J., Burge L. In Situ Jet-Testing of the Erosional Resistance of Cohesive Streambeds. Can. J. Civ. Eng. 2007;34:1192–1195. doi: 10.1139/l07-024. DOI
Mahalder B., Schwartz J.S., Palomino A.M., Zirkle J. Estimating Erodibility Parameters for Streambanks with Cohesive Soils Using the Mini Jet Test Device: A Comparison of Field and Computational Methods. Water. 2018;10:304. doi: 10.3390/w10030304. DOI
Regazzoni P.-L., Marot D. Investigation of Interface Erosion Rate by Jet Erosion Test and Statistical Analysis. Eur. J. Environ. Civ. Eng. 2011;15:1167–1185. doi: 10.1080/19648189.2011.9714847. DOI
Sanchez R.L., Strutynsky A.I., Silver M.L. Evaluation of the Erosion Potential of Embankment Core Materials using the Laboratory Tri-Axial Erosion Test Procedure (Technical Report GL-83-4) Army Engineers Waterways Experiment Station; Viksburg, MS, USA: 1983. p. 335.
Bendahmane F., Marot D., Rosquoet F., Alexis A. Characterization of Internal Erosion in Sand Kaolin Soils. Revue Eur. De Génie Civ. 2006;10:505–520. doi: 10.1080/17747120.2006.9692841. DOI
Bendahmane F., Marot D., Alexis A. Experimental Parametric Study of Suffusion and Backward Erosion. J. Geotech. Geoenviron. Eng. 2008;134:57–67. doi: 10.1061/(ASCE)1090-0241(2008)134:1(57). DOI
Suits L.D., Sheahan T.C., Richards K.S., Reddy K.R. True Triaxial Piping Test Apparatus for Evaluation of Piping Potential in Earth Structures. Geotech. Test. J. 2010;33:1–13. doi: 10.1520/GTJ102246. DOI
Monnet J., Plé O., Nguyen D.M., Plotto P. A New Test for the Characterization of Suffusion into Embankment and Dam; Proceedings of the 6th International Conference on Scour and Erosion (ICSE-6); Paris, France. 27–31 August 2012; pp. 1073–1080.
Monnet J., Plé O., Nguyen D.M., Plotto P. In: Characterization of the Susceptibility of the Soils to Internal Erosion, In Geotechnical and Geophysical Site Characterization 4. 1st ed. Coutinho R.Q., Mayne P.W., editors. Taylor & Francis Group; London, UK: 2013. pp. 765–770.
ÖNORM B 4452 . Erd-Und Grundbau Dichtwände im Untergrund [Geotechnical Engineering/Foundation Engineering—Cut-off Walls] Österreichisches Normungsinstitut; Wien, Austria: 1998. (In German)