Ear morphology in two root-rat species (genus Tachyoryctes) differing in the degree of fossoriality
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33956210
DOI
10.1007/s00359-021-01489-z
PII: 10.1007/s00359-021-01489-z
Knihovny.cz E-zdroje
- Klíčová slova
- Ear morphology, Hearing, Spalacidae, Subterranean mammals, Tachyoryctes,
- MeSH
- hlodavci anatomie a histologie MeSH
- ucho anatomie a histologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
It is supposed that the subterranean lifestyle in mammals is reflected in ear morphology and tuning of hearing to low frequencies. We studied two root-rat species to see if their ear morphology reflects the difference in the amount of their surface activity. Whereas the more subterranean Tachyoryctes splendens possesses shorter pinnae as expected, it has smaller bullae compared to the more epigeic Tachyoryctes macrocephalus. The ratio between the eardrum and the stapedial footplate area and the ratio between the mallear and the incudal lever were lower in T. splendens (19.3 ± 0.3 and 1.9 ± 0.0, respectively) than in T. macrocephalus (21.8 ± 0.6 and 2.1 ± 0.1), probably reflecting the latter's higher surface activity. The cochlea in both species has 3.5 coils, yet the basilar membrane is longer in the smaller T. splendens (13.0 ± 0.5 versus 11.4 ± 0.7 mm), which indicates its wider hearing range and/or higher sensitivity (to some frequencies). In both root-rat species, the highest density of outer hair cells (OHC) was in the apical part of the cochlea, while the highest density of inner hair cells (IHC) was in its middle part. This OHC density pattern corresponds with good low-frequency hearing, whereas the IHC pattern suggests sensitivity to higher frequencies.
Zobrazit více v PubMed
Argyle AC, Mason MJ (2008) Middle ear structures of Octodon degus (Rodentia: Octodontidae) in comparison with those in subterranean caviomorphs. J Mammal 89:1447–1455
Begall S, Burda H (2006) Acoustic communication and burrow acoustics are reflected in the ear morphology of the coruro (Spalacopus cyanus, Octodontidae), a social fossorial rodent. J Morphol 267:382–390 PubMed
Begall S, Burda H, Schneider B (2004) Hearing in coruros (Spalacopus cyanus): special audiogram features of a subterranean rodent. J Comp Physiol A 190:963–969
Begall S, Lange S, Schleich CE, Burda H (2007a) Acoustics, audition and auditory system. In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents: news from underground. Springer, Berlin, pp 97–111
Begall S, Burda H, Schleich CE (2007b) Introduction. In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents: news from underground. Springer, Berlin, pp 3–7
Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Asociates Inc, Suderland
Bruns V, Müller M, Hofer W, Heth G, Nevo E (1988) Inner ear structure electrophysiological audiograms of the subterranean mole rat, Spalax ehrenbergi. Hear Res 33:1–9 PubMed
Burda H (1985) Qualitative assessment of postnatal maturation of the organ of Corti in two rat strains. Hear Res 17:201–208 PubMed
Burda H (2006) Ear and eye in subterranean mole-rats, Fukomys anselli (Bathyergidae) and Spalax ehrenbergi (Spalacidae): progressive specialisation or regressive degeneration? Anim Biol 56:475–486
Burda H, Ballast L, Bruns V (1988) Cochlea in old world mice and rats (Muridae). J Morphol 198:269–285 PubMed
Burda H, Bruns V, Nevo E (1989) Middle ear and cochlear receptors in the subterranean mole-rat, Spalax ehrenbergi. Hear Res 39:225–230 PubMed
Burda H, Bruns V, Müller M (1990) Sensory adaptations in subterranean mammals. Evolution of subterranean mammals at the organismal and molecular levels. Progr Clin Biol Res 335:269–293
Burda H, Bruns V, Hickman GC (1992) The ear in subterranean Insectivora and Rodentia in comparison with ground-dwelling representatives. I. Sound conducting system of the middle ear. J Morphol 214:49–61 PubMed
Coleman MN, Colbert MW (2010) Correlations between auditory structures and hearing sensitivity in non-human primates. J Morphol 271:511–532 PubMed
Crumpton N, Kardjilov N, Asher RJ (2015) Convergence vs. specialization in the ear region of moles (Mammalia). J Morphol 276:900–914 PubMed
Echteler SM, Fay RR, Popper AN (1994) Structure of the mammalian cochlea. In: Fay RR, Popper AN (eds) Comparative hearing: mammals. Springer, New York, pp 134–171
Ekdale EG (2016) Form and function of the mammalian inner ear. J Anat 228(2):324–337 PubMed
Fleischer G (1978) Evolutionary principles of the mammalian middle ear. Adv Anat Embryol Cell Biol 55:1–70
Francescoli G (2000) Sensory capabilities and communication in subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: the biology of subterranean rodents. University of Chicago Press, Illinois, pp 111–144
Gerhardt P, Henning Y, Begall S, Malkemper EP (2017) Audiograms of three subterranean rodent species (genus Fukomys) determined by auditory brainstem responses reveal extremely poor high-frequency cut-offs. J Exp Biol 220:4377–4382 PubMed
Heffner H (1980) Hearing in Glires: domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. J Acoust Soc Am 68:1584–1599
Heffner RS, Heffner HE (1990) Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius). Hear Res 46:239–252 PubMed
Heffner RS, Heffner HE (1992) Hearing and sound localization in blind mole rats (Spalax ehrenbergi). Hear Res 62:206–216 PubMed
Heffner RS, Heffner HE (1993) Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures. J Comp Neurol 331:418–433 PubMed
Heffner RS, Heffner HE, Contos C, Kearns D (1994) Hearing in prairie dogs: transition between surface and subterranean rodents. Hear Res 73:185–189 PubMed
Heth G, Frankenberg E, Nevo E (1986) Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia 42:1287–1289 PubMed
Hrouzková E, Dvořáková V, Jedlička P, Šumbera R (2013) Seismic communication in demon African mole rat Tachyoryctes daemon from Tanzania. J Ethol 31:255–259
Hrouzková E, Šklíba J, Pleštilová L, Hua L, Meheretu Y, Sillero-Zubiri C, Šumbera R (2018) Seismic communication in spalacids: signals in the giant root-rat and Gansu zokor. Hystrix It J Mammal 29:243–245
Jarvis JUM, Sale JB (1971) Burrowing and burrow patterns of East-African mole-rats Tachyoryctes, Heliophobius and Heterocephalus. J Zool 163:451–479
Katandukila JV, Bennett NC, Chimimba CT, Faulkes CG, Oosthuizen MK (2013) Locomotor activity patterns of captive East African root rats, Tachyoryctes splendens (Rodentia: Spalacidae), from Tanzania, East Africa. J Mammal 94:1393–1400
Katandukila JV, Chimimba CT, Bennett NC, Makundi RH, Le Comber SC, Faulkes CG (2014) Sweeping the house clean: burrow architecture and seasonal digging activity in the East African root rat from Tanzania. J Zool 293:271–280
Kokiso A, Bekele A (2008) Ecology of common mole-rat, Tachyoryctes splendens and its impacts on farmlands at Angecha, Central Ethiopia. Act Zool Sinica 54:30–35
Lange S (2005) Sinnesökologie afrikanischer Sandgräber (Bathyergidae) am Beispiel von Hör- und Geruchssinn. Dissertation (PhD thesis), Universität Duisburg-Essen, p 177
Lange S, Stalleicken J, Burda H (2004) Functional morphology of the ear in fossorial rodents, Microtus arvalis and Arvicola terrestris. J Morphol 262:770–779 PubMed
Lange S, Burda H, Wegner RE, Dammann P, Begall S, Kawalika M (2007) Living in a “stethoscope”: burrow acoustics promote auditory specializations in subterranean rodents. Naturwissenschaften 94:134–138 PubMed
Lavocat R, Parent JP (1985) Phylogenetic analysis of middle ear features in fossil and living rodents. In: Luckett WP, Hartenberger JL (eds) Evolutionary relationships among rodents. A multidisciplinary analysis. Springer, Boston, pp 333–354
Manoussaki D, Chadwick RS, Ketten DR, Arruda J, Dimitriadis EK, O’Malley JT (2008) The influence of cochlear shape on low-frequency hearing. Proc Natl Acad Sci 105:6162–6166 PubMed PMC
Mason MJ (2001) Middle ear structures in fossorial mammals: a comparison with non-fossorial species. J Zool 255:467–486
Mason MJ (2004) The middle ear apparatus of the tuco-tuco Ctenomys sociabilis (Rodentia, Ctenomyidae). J Mammal 85:797–805
Mason MJ (2013) Of mice, moles and guinea-pigs: functional morphology of the middle ear in living mammals. Hear Res 301:4–18 PubMed
Mason MJ (2016) Structure and function of the mammalian middle ear. II: inferring function from structure. J Anat 228:300–312 PubMed
Mason MJ, Lai FWS, Li JG, Nevo E (2010) Middle ear structure and bone conduction in Spalax, Eospalax, and Tachyoryctes mole-rats (Rodentia: Spalacidae). J Morphol 271:462–472 PubMed
Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Syst 10:269–308
Nevo E (1999) Mosaic evolution of subterranean mammals (regression, progression and convergence). Oxford University Press, Oxford, p 413
Norris RW (2017) Family Spalacidae (Muroid mole-rats). In: Wilson DE, Lacher TE Jr, Mittermeier RA (eds) Handbook of the mammals of the world—vol 7. Rodents II. Lynx Editions, p 1008
Plassmann W, Kadel M (1991) Low-frequency sensitivity in a gerbilline rodent, Pachyuromys duprasi. Brain Behav Evol 38:115–126 PubMed
Pleštilová L, Hrouzková E, Burda H, Šumbera R (2016) Does the morphology of the ear of the Chinese bamboo rat (Rhizomys sinensis) show “subterranean” characteristics? J Morphol 277:575–584 PubMed
Pleštilová L, Hrouzková E, Burda H, Hua L, Šumbera R (2019) Additional row of outer hair cells—the unique pattern of the Corti organ in a subterranean rodent, the Gansu zokor (Eospalax cansus). Mamm Biol 94:11–17
Rado R, Himelfarb M, Arensburg B, Terkel J, Wollberg Z (1989) Are seismic communication signals transmitted by bone conduction in the blind mole rat? Hear Res 41:23–30 PubMed
Rosowski JJ (1994) Outer and middle ears. In: Fay RR, Popper AN (eds) Comparative hearing: mammals. Springer, New York, pp 172–247
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Tinevez JY (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682 PubMed
Schleich CE, Vassallo AI (2003) Bullar volume in subterranean and surface-dwelling caviomorph rodents. J Mammal 84:185–189
Schleich CE, Begall S, Burda H (2006) Morpho-functional parameters of the inner ear in Ctenomys talarum; Rodentia, Ctenomyidae. Folia Zool 55:264–272
Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The cochlea. Springer, New York, pp 44–129
Smith AT, Xie Y (2008) A guide to the mammals of China. Princeton University Press, Princeton, p 576
Šumbera R, Krásová J, Lavrenchenko LA, Mengistu S, Bekele A, Mikula O, Bryja J (2018) Ethiopian highlands as a cradle of the African fossorial root-rats (genus Tachyoryctes), the genetic evidence. Mol Phylogenet Evol 126:105–115 PubMed
Vlasatá T, Šklíba J, Lövy M, Meheretu Y, Sillero-Zubiri C, Šumbera R (2017) Daily activity patterns in the giant root rat (Tachyoryctes macrocephalus), a fossorial rodent from the Afro-alpine zone of the Bale Mountains, Ethiopia. J Zool 302:157–163
Wannaprasert T (2016) Functional morphology of the ear of the lesser bamboo rat (Cannomys badius). Mammal Study 41:107–117
West CD (1985) The relationship of the spiral turns of the cochlea and the length of the basilar membrane to the range of audible frequencies in ground dwelling mammals. J Acoust Soc Am 77:1091–1101 PubMed
Yalden DW (1985) Tachyoryctes macrocephalus. Mamm Species 237:1–3