Diversification, selective sweep, and body size in the invasive Palearctic alfalfa weevil infected with Wolbachia
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33958611
PubMed Central
PMC8102540
DOI
10.1038/s41598-021-88770-y
PII: 10.1038/s41598-021-88770-y
Knihovny.cz E-resources
- MeSH
- Phylogeny MeSH
- Phylogeography MeSH
- Genetic Variation genetics MeSH
- Haplotypes genetics MeSH
- Mitochondria genetics MeSH
- Weevils genetics microbiology MeSH
- Body Size MeSH
- Wolbachia * MeSH
- Introduced Species MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Asia MeSH
- Europe MeSH
The alfalfa weevil Hypera postica, native to the Western Palearctic, is an invasive legume pest with two divergent mitochondrial clades in its invading regions, the Western clade and the Eastern/Egyptian clade. However, knowledge regarding the native populations is limited. The Western clade is infected with the endosymbiotic bacteria Wolbachia that cause cytoplasmic incompatibility in host weevils. Our aim was to elucidate the spatial genetic structure of this insect and the effect of Wolbachia on its population diversity. We analyzed two mitochondrial and two nuclear genes of the weevil from its native ranges. The Western clade was distributed in western/central Europe, whereas the Eastern/Egyptian clade was distributed from the Mediterranean basin to central Asia. Intermediate mitotypes were found from the Balkans to central Asia. Most Western clade individuals in western Europe were infected with an identical Wolbachia strain. Mitochondrial genetic diversity of the infected individuals was minimal. The infected clades demonstrated a higher nonsynonymous/synonymous substitution rate ratio than the uninfected clades, suggesting a higher fixation of nonsynonymous mutations due to a selective sweep by Wolbachia. Trans-Mediterranean and within-European dispersal routes were supported. We suggest that the ancestral populations diversified by geographic isolation due to glaciations and that the diversity was reduced in the west by a recent Wolbachia-driven sweep(s). The intermediate clade exhibited a body size and host plant that differed from the other clades. Pros and cons of the possible use of infected-clade males to control uninfected populations are discussed.
CBGP Cirad Montpellier SupAgro INRA IRD Univ Montpellier Montpellier France
Hungarian Natural History Museum Budapest Hungary
Institute of Biological Control Faculty of Agriculture Kyushu University Fukuoka 819 0395 Japan
Research Institute of Environment Agriculture and Fisheries Osaka Prefecture Japan
School of Biological Sciences University of Queensland Brisbane Australia
See more in PubMed
Bonizzoni M, et al. On the origins of medfly invasion and expansion in Australia. Mol. Ecol. 2004;13:3845–3855. doi: 10.1111/j.1365-294X.2004.02371.x. PubMed DOI
Tuda M, Kagoshima K, Toquenaga Y, Arnqvist G. Global genetic differentiation in a cosmopolitan pest of stored beans: Effects of geography, host-plant usage and anthropogenic factors. PLoS ONE. 2014;9:e106268. doi: 10.1371/journal.pone.0106268. PubMed DOI PMC
Karsten M, van Vuuren BJ, Addison P, Terblanche JS. Deconstructing intercontinental invasion pathway hypotheses of the Mediterranean fruit fly (Ceratitis capitata) using a Bayesian inference approach: Are port interceptions and quarantine protocols successfully preventing new invasions? Divers. Distrib. 2015;21:813–825. doi: 10.1111/ddi.12333. DOI
Rodriguero MS, et al. Out of the forest: past and present range expansion of a parthenogenetic weevil pest, or how to colonize the world successfully. Ecol. Evol. 2016;6:5431–5445. doi: 10.1002/ece3.2180. PubMed DOI PMC
Kébé K, et al. Global phylogeography of the insect pest Callosobruchus maculatus (Coleoptera: Bruchinae) relates to the history of its main host Vigna unguiculata. J. Biogeogr. 2017;44:2515–2526. doi: 10.1111/jbi.13052. DOI
Lombaert E, et al. Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data. Biol. Invasions. 2018;20:665–677. doi: 10.1007/s10530-017-1566-2. DOI
Tuda M, Ronn J, Buranapanichpan S, Wasano N, Arnqvist G. Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): Traits associated with stored-product pest status. Mol. Ecol. 2006;15:3541–3551. doi: 10.1111/j.1365-294X.2006.03030.x. PubMed DOI
Wei SJ, et al. Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol. Ecol. 2015;24:4094–4111. doi: 10.1111/mec.13300. PubMed DOI
Takano S, et al. Unique clade of alphaproteobacterial endosymbionts induces complete cytoplasmic incompatibility in the coconut beetle. Proc. Natl. Acad. Sci. USA. 2017;114:6110–6115. doi: 10.1073/pnas.1618094114. PubMed DOI PMC
Radcliffe EB, Flanders KL. Biological control of alfalfa weevil in North America. Integr. Pest Manag. Rev. 1998;3:225–242. doi: 10.1023/A:1009611219360. DOI
Kuwata R, Tokuda M, Yamaguchi D, Yukawa J. Coexistence of two mitochondrial DNA haplotypes in Japanese populations of Hypera postica (Col., Curculionidae) J. Appl. Entomol. 2005;129:191–197. doi: 10.1111/j.1439-0418.2005.00954.x. DOI
Skuhrovec J. Host plants of weevils of the genus Hypera (Coleoptera: Curculionidae) occurring in the Czech Republic. Klapalekiana. 2005;41:215–255.
Wood, K. A., Armbrust, E. J., Bartell, D. P. & Irwin, B. J. The literature of arthropods associated with alfalfa. V. A bibliography of the alfalfa weevil, Hypera postica (Gyllenhal), and the Egyptian alfalfa weevil, Hypera brunneipennis (Boheman) (Coleoptera: Curculionidae). Illinois Agricultural Experimental Station, Special Publication, 54 (1978).
Kimura, H., Okumura, M. & Yoshida, T. Emergence of and recent damage by the alfalfa weevil. Shokubutsu Boeki (Plant Protection) 42, 498–501 (in Japanese) (1988).
CAB International crop protection compendium. CAB International. http://www.cabicompendium.org/cpc/home.asp (2013).
Titus EG. On the life history of the alfalfa leaf-weevil. J. Econ. Entomol. 1910;3:459–470. doi: 10.1093/jee/3.6.459. DOI
Wehrle LP. The discovery of an alfalfa weevil (Hypera brunneipennis Boheman) in Arizona. J. Econ. Entomol. 1940;33:119–121. doi: 10.1093/jee/33.1.119. DOI
Poos FW, Bissell TL. The alfalfa weevil in Maryland. J. Econ. Entomol. 1953;46:178–179. doi: 10.1093/jee/46.1.178. DOI
Volker KC, Simpson RG. Behavior of alfalfa weevil larvae affecting the establishment of Tetrastichus incertus in Colorado. Environ. Entomol. 1975;4:742–744. doi: 10.1093/ee/4.5.742. DOI
Salt G, van den Bosch R. The defense reactions of three species of Hypera (Coleoptera, Curculionidae) to an Ichneumon wasp. J. Invertebr. Pathol. 1967;9:164–177. doi: 10.1016/0022-2011(67)90005-5. DOI
Maund CM, Hsiao TH. Differential encapsulation of two Bathyplectes parasitoids among alfalfa weevil strains, Hypera postica (Gyllenhal) Can. Entomol. 1991;123:197–203. doi: 10.4039/Ent123197-1. DOI
Hsiao, T. H. Studies of interactions between alfalfa weevil strains, Wolbachia endosymbionts and parasitoids. In The ecology of agricultural pests: biochemical approaches (eds, Symondson, W. O. C. & Liddell, J. E.). 57–71 (Chapman & Hall, 1996).
Hsiao TH, Stutz JM. Discrimination of alfalfa weevil strains by allozyme analysis. Entomol. Exp. Appl. 1985;37:113–121. doi: 10.1111/j.1570-7458.1985.tb03461.x. DOI
Erney SJ, Pruess KP, Danielson SD, Powers TO. Molecular differentiation of alfalfa weevil strains (Coleoptera: Curculionidae) Ann. Entomol. Soc. Am. 1996;89:804–811. doi: 10.1093/aesa/89.6.804. DOI
Böttger JAA. Phylogenetic analysis of the alfalfa weevil complex (Coleoptera: Curculionidae) in North America. J. Econ. Entomol. 2013;106:426–436. doi: 10.1603/EC12262. PubMed DOI
Iwase S, Nakahira K, Tuda M, Kagoshima K, Takagi M. Host-plant dependent population genetics of the invading weevil Hypera postica. Bull. Entomol. Res. 2015;105:92–100. doi: 10.1017/S0007485314000728. PubMed DOI
White CE, Armbrust EJ, Ashley J. Cross-mating studies of eastern and western strains of alfalfa weevil. J. Econ. Entomol. 1972;65:85–89. doi: 10.1093/jee/65.1.85. DOI
Iwase S, Tani S. New haplotype and inter-strain reproductive compatibility of Wolbachia-uninfected alfalfa weevil, Hypera postica (Coleoptera: Curculionidae), in Japan. Entomol. Sci. 2016;19:72–76. doi: 10.1111/ens.12150. DOI
Werren JH. Biology of Wolbachia. Annu. Rev. Entomol. 1997;42:587–609. doi: 10.1146/annurev.ento.42.1.587. PubMed DOI
LePage DP, et al. Prophage WO genes recapitulate and enhance Wolbachia-induced cytoplasmic incompatibility. Nature. 2017;543:243–247. doi: 10.1038/nature21391. PubMed DOI PMC
Bailly-Bechet M, et al. How long does Wolbachia remain on board? Mol. Biol. Evol. 2017;34:1183–1193. doi: 10.1093/molbev/msx073. PubMed DOI
Hale LR, Hoffmann AA. Mitochondrial DNA polymorphism and cytoplasmic incompatibility in natural populations of Drosophila simulans. Evolution. 1990;44:1383–1386. doi: 10.1111/j.1558-5646.1990.tb05241.x. PubMed DOI
Ballard JWO, Kreitman M. Unravelling selection in the mitochondrial genome of Drosophila. Genetics. 1994;138:757–772. doi: 10.1093/genetics/138.3.757. PubMed DOI PMC
Johnstone RA, Hurst GDD. Maternally inherited male-killing microorganisms may confound interpretation of mitochondrial DNA variability. Biol. J. Linn. Soc. 1996;58:453–470. doi: 10.1111/j.1095-8312.1996.tb01446.x. DOI
Jiggins FM. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics. 2003;164:5–12. doi: 10.1093/genetics/164.1.5. PubMed DOI PMC
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008;6:741–751. doi: 10.1038/nrmicro1969. PubMed DOI
Shoemaker DD, Dyer KA, Ahrens M, McAbee K, Jaenike J. Decreased diversity but increased substitution rate in host mtDNA as a consequence of Wolbachia endosymbiont infection. Genetics. 2004;168:2049–2058. doi: 10.1534/genetics.104.030890. PubMed DOI PMC
Cariou M, Duret L, Charlat S. The global impact of Wolbachia on mitochondrial diversity and evolution. J. Evol. Biol. 2017;30:2204–2210. doi: 10.1111/jeb.13186. PubMed DOI
Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 2008;6:2753–2763. doi: 10.1371/journal.pbio.1000002. PubMed DOI PMC
Brownlie JC, et al. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 2009;5:e1000368. doi: 10.1371/journal.ppat.1000368. PubMed DOI PMC
Rand DM, Haney RA, Fry AJ. Cytonuclear coevolution: the genomics of cooperation. TRENDS Ecol. Evol. 2004;19:645–653. doi: 10.1016/j.tree.2004.10.003. PubMed DOI
Arnqvist G, et al. The genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect. Evolution. 2010;64:3354–3363. doi: 10.1111/j.1558-5646.2010.01135.x. PubMed DOI
Blickenstaff CC. Partial intersterility of eastern and western US strains of the alfalfa weevil. Ann. Entomol. Soc. Am. 1965;58:523–526. doi: 10.1093/aesa/58.4.523. DOI
Hsiao TH, Hsiao C. Hybridization and cytoplasmic incompatibility among alfalfa weevil strains. Entomol. Exp. Appl. 1985;37:155–159. doi: 10.1111/j.1570-7458.1985.tb03467.x. DOI
Laven H. Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature. 1967;216:383–384. doi: 10.1038/216383a0. PubMed DOI
Iwase S, et al. Dynamics of infection with Wolbachia in Hypera postica (Coleoptera: Curculionidae) during invasion and establishment. Biol. Invasions. 2015;17:3639–3648. doi: 10.1007/s10530-015-0985-1. DOI
Sanaei E, et al. Global genetic diversity, lineage distribution and Wolbachia infection of the alfalfa weevil Hypera postica (Coleoptera: Curculionidae) Ecol. Evol. 2019;9:9546–9563. doi: 10.1002/ece3.5474. PubMed DOI PMC
Ros VID, Fleming VM, Feil EJ, Breeuwer JAJ. How diverse is the genus Wolbachia? Multiple-gene sequencing reveals a putatively new Wolbachia supergroup recovered from spider mites (Acari: Tetranychidae) Appl. Environ. Microbiol. 2009;75:1036–1043. doi: 10.1128/AEM.01109-08. PubMed DOI PMC
Avise JC. Phylogeography: The history and formation of species. Harvard University Press; 2000.
Narita S, Nomura M, Kato Y, Fukatsu T. Genetic structure of sibling butterfly species affected by Wolbachia infection sweep: evolutionary and biogeographical implications. Mol. Ecol. 2006;15:1095–1108. doi: 10.1111/j.1365-294X.2006.02857.x. PubMed DOI
Raychoudhury R, et al. Phylogeography of Nasonia vitripennis (Hymenoptera) indicates a mitochondrial–Wolbachia sweep in North America. Heredity. 2010;104:318–326. doi: 10.1038/hdy.2009.160. PubMed DOI
Jäckel R, Mora D, Dobler S. Evidence for selective sweeps by Wolbachia infections: phylogeny of Altica leaf beetles and their reproductive parasites. Mol. Ecol. 2013;22:4241–4255. doi: 10.1111/mec.12389. PubMed DOI
Jiang W, et al. Wolbachia infection status and genetic structure in natural populations of Polytremis nascens (Lepidoptera: Hesperiidae) Infect. Genet. Evol. 2014;27:202–211. doi: 10.1016/j.meegid.2014.07.026. PubMed DOI
Jansen VAA, Turelli M, Godfray HCJ. Stochastic spread of Wolbachia. Proc. R. Soc. Lond. B Biol. Sci. 2008;275:2769–2776. PubMed PMC
Clancy DJ, Hoffmann AA. Environmental effects on cytoplasmic incompatibility and bacterial load in Wolbachia-infected Drosophila simulans. Entomol. Exp. Appl. 1998;86:13–24. doi: 10.1046/j.1570-7458.1998.00261.x. DOI
Bordenstein SR, Bordenstein SR. Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility. PLoS ONE. 2011;6:e29106. doi: 10.1371/journal.pone.0029106. PubMed DOI PMC
Kamo T, et al. Limited distribution of natural cyanamide in higher plants: Occurrence in Vicia villosa subsp varia, V. cracca, and Robinia pseudo-acacia. Phytochemistry. 2008;69:1166–1172. doi: 10.1016/j.phytochem.2007.11.004. PubMed DOI
Megías C, Cortes-Giraldo I, Giron-Calle J, Alaiz M, Vioque J. Free amino acids, including canavanine, in the seeds from 32 Vicia species belonging to subgenus Vicilla. Biocatal. Agric. Biotechnol. 2016;8:126–129. doi: 10.1016/j.bcab.2016.09.001. DOI
Rosenthal GA, Dahlman DL. Incorporation of L-canavanine into proteins and the expression of its antimetabolic effects. J. Agric. Food Chem. 1991;39:987–990. doi: 10.1021/jf00005a037. DOI
Kamo, T., Tokuoka. Y. & Miyazaki, M. Quantification of canavanine, 2-aminoethanol, and cyanamide in Aphis craccivora and its host plants, Robinia pseudoacacia and Vicia angustifolia: Effects of these compounds on larval survivorship of Harmonia axyridis. J. Chem. Ecol. 38, 1552–1560 (2012). PubMed
Hewitt GM. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 1999;68:87–112. doi: 10.1111/j.1095-8312.1999.tb01160.x. DOI
Schmitt T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 2007;4:11. doi: 10.1186/1742-9994-4-11. PubMed DOI PMC
Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 1998;7:453–464. doi: 10.1046/j.1365-294x.1998.00289.x. PubMed DOI
Jordal BH, Kambestad M. DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Mol. Ecol. Resour. 2013;14:7–17. doi: 10.1111/1755-0998.12150. PubMed DOI
Quiros, C. F. & Bauchan, G. R. The genus Medicago and the origin of the Medicago sativa complex. In Alfalfa and alfalfa improvement (eds, Hanson, A. A., Barnes, D. K. & Hill, R. R.). 93–124 (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 1988).
Small E. Alfalfa and Relatives: Evolution and Classification of Medicago. NRC Research Press; 2011.
FAO Statistics Division. FAOSTAT: Crops and livestock products. http://www.fao.org/faostat/en/#data/TP (2017).
Simon CA, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 1994;87:651–701. doi: 10.1093/aesa/87.6.651. DOI
Kim CG, et al. Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences. Mol. Biol. Evol. 2000;17:137–145. doi: 10.1093/oxfordjournals.molbev.a026226. PubMed DOI
Holden PR, Brookfield JFY, Jones P. Cloning and characterization of an ftsZ homologue from a bacterial symbiont of Drosophila melanogaster. Mol. Gen. Genet. 1993;240:213–220. doi: 10.1007/BF00277059. PubMed DOI
Kondo NI, et al. Wolbachia infections in world populations of bean beetles (Coleoptera: Chrysomelidae: Bruchinae) infesting cultivated and wild legumes. Zool. Sci. 2011;28:501–508. doi: 10.2108/zsj.28.501. PubMed DOI
Baldo L, et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl. Environ. Microbiol. 2006;72:7098–7110. doi: 10.1128/AEM.00731-06. PubMed DOI PMC
Huelsenbeck JP, Ronquist F. MrBayes: Bayesian inference of phylogeny. Biometrics. 2001;17:754–755. PubMed
Nylander, J. A. A. MrAIC.pl. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University (2004).
Rambaut, A. & Drummond, A. J. Tracer v1.5, http://beast.bio.ed.ac.uk/ (2009).
Tajima F. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. doi: 10.1093/genetics/123.3.585. PubMed DOI PMC
Fu Y-X, Li W-H. Statistical tests of neutrality of mutations. Genetics. 1993;133:693–709. doi: 10.1093/genetics/133.3.693. PubMed DOI PMC
Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. PubMed DOI
Yang Z. PAML 4: A program package for phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007;24:1586–1591. doi: 10.1093/molbev/msm088. PubMed DOI
Song H, Buhay JE, Whiting MF, Crandall KA. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc. Natl. Acad. Sci. USA. 2008;105:13486–13491. doi: 10.1073/pnas.0803076105. PubMed DOI PMC
Haran J, Koutroumpa F, Magnoux E, Roques A, Roux G. Ghost mtDNA haplotypes generated by fortuitous NUMTs can deeply disturb infra-specific genetic diversity and phylogeographic pattern. J. Zoolog. Syst. Evol. Res. 2015;53:109–115. doi: 10.1111/jzs.12095. DOI
Clement M, Snell Q, Walker P, Posada D, Crandall K. TCS: Estimating gene genealogies. Parallel Distrib. Proces. Symp. Int. Proc. 2002;2:184.
Tajima F. Evolutionary relationship of DNA sequences in finite populations. Genetics. 1983;105:437–460. doi: 10.1093/genetics/105.2.437. PubMed DOI PMC
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI
Wright S. Isolation by distance. Genetics. 1943;28:114–138. doi: 10.1093/genetics/28.2.114. PubMed DOI PMC
Mantel N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–220. PubMed
Raymond M, Rousset F. Genepop (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995;86:248–249. doi: 10.1093/oxfordjournals.jhered.a111573. DOI
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 1979;76:5269–5273. doi: 10.1073/pnas.76.10.5269. PubMed DOI PMC
Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLoS Comput. Biol. 2009;5:e1000520. doi: 10.1371/journal.pcbi.1000520. PubMed DOI PMC
Suchard MA, et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4:vey016. doi: 10.1093/ve/vey016. PubMed DOI PMC
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. doi: 10.1093/molbev/mss075. PubMed DOI PMC
Bielejec F, et al. SpreaD3: Interactive visualization of spatiotemporal history and trait evolutionary processes. Mol. Biol. Evol. 2016;33:2167–2169. doi: 10.1093/molbev/msw082. PubMed DOI PMC