Flavin-Helicene Amphiphilic Hybrids: Synthesis, Characterization, and Preparation of Surface-Supported Films
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Institute of Chemical Process Fundamentals of the CAS
RVO 61989592
Palacky University
IGA_LF_2020_022
Palacky University
Ministry of Education, Youth and Sports
20-19353S
Czech Science Foundation
CZ.02.2.69/0.0/0.0/16_027/0008482
Czech Science Foundation
e-INFRA LM2018140
Czech Science Foundation
PubMed
33977667
DOI
10.1002/cplu.202100092
Knihovny.cz E-zdroje
- Klíčová slova
- flavins, helicenes, lipidic cubic phases, redox behavior, thin layers,
- Publikační typ
- časopisecké články MeSH
This work reports on the preparation and structural characterization of flavo[7]helicene 1 (flavin-[7]helicene conjugate), which was subsequently characterized at the molecular level in either an aqueous environment or an organic phase, at the supramolecular level in the form of polymeric layers, and also embedded in a lipidic mesophase environment to study the resulting properties of such a hybrid relative to its parent molecules. The flavin benzo[g]pteridin-2,4-dione (isoalloxazine) was selected for conjugation because of its photoactivity and reversible redox behavior. Compound 1 was prepared from 2-nitroso[6]helicene and 6-methylamino-3-methyluracil, and characterized using common structural and spectroscopic tools: circular dichroism (CD), circularly polarized luminescence (CPL) spectroscopy, cyclic voltammetry (CV), and DFT quantum calculations. In addition, a methodology that allows the loading of 1 enantiomers into an internally nanostructured lipid (1-monoolein) matrix was developed.
Faculty of Chemistry University of Warsaw Pasteura 1 Warsaw 02 093 Poland
Institute of Chemistry Masaryk University Kamenice 5 Brno 725 00 Czech Republic
Univ Rennes CNRS ISCR UMR 6226 Campus de Beaulieu 35042 Rennes Cedex France
Zobrazit více v PubMed
M. Gingras, Chem. Soc. Rev. 2013, 42, 1051-1095;
M. Gingras, Chem. Soc. Rev. 2013, 42, 968-1006;
M. Gingras, G. Felix, R. Peresutti, Chem. Soc. Rev. 2013, 42, 1007-1050.
J. E. Field, G. Muller, J. P. Riehl, D. Venkataraman, J. Am. Chem. Soc. 2003, 125, 11808-11809;
D. J. Morrison, T. K. Trefz, W. E. Piers, R. McDonald, M. Parvez, J. Org. Chem. 2005, 70, 5309-5312;
Y. Ooyama, G. Ito, H. Fukuoka, T. Nagano, Y. Kagawa, I. Imae, K. Komaguchi, Y. Harima, Tetrahedron 2010, 66, 7268-7271;
Y. Tang, T. A. Cook, A. E. Cohen, J. Phys. Chem. A 2009, 113, 6213-6216.
T. Hatakeyama, S. Hashimoto, T. Oba, M. Nakamura, J. Am. Chem. Soc. 2012, 134, 19600-19603;
Y. Yang, R. C. Da Costa, M. J. Fuchter, A. J. Campbell, Nat. Photonics 2013, 7, 634-638.
L. Shi, Z. Liu, G. Dong, L. Duan, Y. Qiu, J. Jia, W. Guo, D. Zhao, D. Cui, X. Tao, Chem. Eur. J. 2012, 18, 8092-8099;
J. Storch, J. Zadny, T. Strasak, M. Kubala, J. Sykora, M. Dusek, V. Cirkva, P. Matejka, M. Krbal, J. Vacek, Chem. Eur. J. 2015, 21, 2343-2347;
J. Vacek, J. Zadny, J. Storch, J. Hrbac, ChemPlusChem 2020, 85, 1954-1958.
C.-F. Chen, Y. Shen, Helicene Chemistry: From Synthesis to Applications. Springer, Heidelberg 2016.
M. Jakubec, J. Storch, J. Org. Chem. 2020, 85, 13415-13428.
K. Watanabe, K. Suda, K. Akagi, J. Mater. Chem. C 2013, 1, 2797-2805.
K. Dhbaibi, L. Favereau, J. Crassous, Chem. Rev. 2019, 119, 8846-8953.
M. Jakubec, S. Hansen-Trooyen, I. Cisarova, J. Sykora, J. Storch, Org. Lett. 2020, 22, 3905-3910.
R. Cibulka, Eur. J. Org. Chem. 2015, 2015, 915-932;
A. M. Edwards in Structure and general properties of flavins, Vol. 1146 2014, pp. 3-13;
H. Iida, Y. Imada, S. I. Murahashi, Org. Biomol. Chem. 2015, 13, 7599-7613;
B. König, S. Kümmel, E. Svobodova, R. Cibulka, Phys. Sci. Rev. (10.1515/psr-2017-0168) 2018, 3;
V. Massey, Biochem. Soc. Trans. 2000, 28, 283-296.
E. M. Seward, R. Bruce Hopkins, W. Sauerer, S. W. Tam, F. Diederich, J. Am. Chem. Soc. 1990, 112, 1783-1790.
M. Jakubec, T. Beranek, P. Jakubik, J. Sykora, J. Zadny, V. Cirkva, J. Storch, J. Org. Chem. 2018, 83, 3607-3616.
E. M. Landau, J. P. Rosenbusch, Proc. Natl. Acad. Sci. USA 1996, 93, 14532-14535;
E. Nazaruk, R. Bilewicz, G. Lindblom, B. Lindholm-Sethson, Anal. Bioanal. Chem. 2008, 391, 1569-1578;
M. Zatloukalova, E. Nazaruk, D. Novak, J. Vacek, R. Bilewicz, Biosens. Bioelectron. 2018, 100, 437-444.
M. Caffrey, V. Cherezov, Nature Prot. 2009, 4, 706-731;
D. Li, M. Caffrey, Proc. Natl. Acad. Sci. USA 2011, 108, 8639-8644;
M. Maeki, H. Yamaguchi, M. Tokeshi, M. Miyazaki, Anal. Sci. 2016, 32, 3-9;
E. Nazaruk, E. Górecka, Y. M. Osornio, E. M. Landau, R. Bilewicz, J. Electroanal. Chem. 2018, 819, 269-274.
C. V. Kulkarni, W. Wachter, G. Iglesias-Salto, S. Engelskirchen, S. Ahualli, Phys. Chem. Chem. Phys. 2011, 13, 3004-3021.
J. J. Hasford, C. J. Rizzo, J. Am. Chem. Soc. 1998, 120, 2251-2255;
H. Tatsumi, H. Nakase, K. Kano, T. Ikeda, J. Electroanal. Chem. 1998, 443, 236-242.
J. Hrbac, V. Pavelka, J. Crassous, J. Zadny, L. Fekete, J. Pokorny, P. Vanysek, J. Storch, J. Vacek, Electrochem. Commun. 2020, 113, 106689.
A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, John Willey & Sons, New York, USA 2001.
Y.-M. Legrand, M. Gray, G. Cooke, V. M. Rotello, J. Am. Chem. Soc. 2003, 125, 15789-15795.
E. Nazaruk, P. Miszta, S. Filipek, E. Górecka, E. M. Landau, R. Bilewicz, Langmuir 2015, 31, 12753-12761;
P. Rowiński, A. Korytkowska, R. Bilewicz, Chem. Phys. Lipids 2003, 124, 147-156.
M. Ben Braiek, F. Aloui, S. Moussa, B. Ben Hassine, Tetrahedron Lett. 2015, 56, 6580-6584;
M. J. Fuchter, M. Weimar, X. Yang, D. K. Judge, A. J. P. White, Tetrahedron Lett. 2012, 53, 1108-1111.
J. Storch, K. Kalíková, E. Tesařová, V. Maier, J. Vacek, J. Chromatogr. A 2016, 1476, 130-134.
J. Crassous, Circularly Polarized Luminescence of Isolated Small Organic Molecules, (Ed.: T. Mori), Springer, 2020, chap. 4, pp. 53-97;
W.-L. Zhao, M. Li, H.-Y. Lu, C.-F. Chen, Chem. Commun. 2019, 55, 13793-13803.
G. E. Dobretsov, T. I. Syrejschikova, N. V. Smolina, Biophysics (Russian Federation) 2014, 59, 183-188.
R. Norrestam, B. Stensland, Acta Crystallogr. Sect. B 1972, 28, 440-447.
J. Sykora, I. Cisarova, V. Cirkva, J. Stroch, CCDC 2061539: Experimental Crystal Structure Determination, DOI: 10.5517/ccdc.csd.cc27668y 2021.
D. Cremer, J. A. Pople, J. Am. Chem. Soc. 1975, 97, 1354-1358.
B. S. Green, M. Knossow, Science 1981, 214, 795-797.
G. M. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.
P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J. Appl. Crystallogr. 2003, 36, 1487.
L. Farrugia, J. Appl. Crystallogr. 1997, 30, 565.
E. M. Ferreira, B. M. Stoltz, J. Am. Chem. Soc. 2001, 123, 7725-7726.
H. Qiu, M. Caffrey, Biomaterials 2000, 21, 223-234.
Lipid-based liquid crystalline materials in electrochemical sensing and nanocarrier technology