Multivendor comparison of global and regional 2D cardiovascular magnetic resonance feature tracking strains vs tissue tagging at 3T
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33980259
PubMed Central
PMC8117295
DOI
10.1186/s12968-021-00742-3
PII: S1097-6647(23)00395-2
Knihovny.cz E-zdroje
- Klíčová slova
- Feature tracking, Magnetic resonance imaging, Strain, Tagging,
- MeSH
- funkce levé komory srdeční MeSH
- gadolinium MeSH
- kontrastní látky * MeSH
- lidé MeSH
- magnetická rezonance kinematografická * MeSH
- magnetická rezonanční spektroskopie MeSH
- prediktivní hodnota testů MeSH
- reprodukovatelnost výsledků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gadolinium MeSH
- kontrastní látky * MeSH
BACKGROUND: Cardiovascular magnetic resonance (CMR) 2D feature tracking (FT) left ventricular (LV) myocardial strain has seen widespread use to characterize myocardial deformation. Yet, validation of CMR FT measurements remains scarce, particularly for regional strain. Therefore, we aimed to perform intervendor comparison of 3 different FT software against tagging. METHODS: In 61 subjects (18 healthy subjects, 18 patients with chronic myocardial infarction, 15 with dilated cardiomyopathy, and 10 with LV hypertrophy due to hypertrophic cardiomyopathy or aortic stenosis) were prospectively compared global (G) and regional transmural peak-systolic Lagrangian longitudinal (LS), circumferential (CS) and radial strains (RS) by 3 FT software (cvi42, Segment, and Tomtec) among each other and with tagging at 3T. We also evaluated the ability of regional LS, CS, and RS by different FT software vs tagging to identify late gadolinium enhancement (LGE) in the 18 infarct patients. RESULTS: GLS and GCS by all 3 software had an excellent agreement among each other (ICC = 0.94-0.98 for GLS and ICC = 0.96-0.98 for GCS respectively) and against tagging (ICC = 0.92-0.94 for GLS and ICC = 0.88-0.91 for GCS respectively), while GRS showed inconsistent agreement between vendors (ICC 0.10-0.81). For regional LS, the agreement was good (ICC = 0.68) between 2 vendors but less vs the 3rd (ICC 0.50-0.59) and moderate to poor (ICC 0.44-0.47) between all three FT software and tagging. Also, for regional CS agreement between 2 software was higher (ICC = 0.80) than against the 3rd (ICC = 0.58-0.60), and both better agreed with tagging (ICC = 0.70-0.72) than the 3rd (ICC = 0.57). Regional RS had more variation in the agreement between methods ranging from good (ICC = 0.75) to poor (ICC = 0.05). Finally, the accuracy of scar detection by regional strains differed among the 3 FT software. While the accuracy of regional LS was similar, CS by one software was less accurate (AUC 0.68) than tagging (AUC 0.80, p < 0.006) and RS less accurate (AUC 0.578) than the other two (AUC 0.76 and 0.73, p < 0.02) to discriminate segments with LGE. CONCLUSIONS: We confirm good agreement of CMR FT and little intervendor difference for GLS and GCS evaluation, with variable agreement for GRS. For regional strain evaluation, intervendor difference was larger, especially for RS, and the diagnostic performance varied more substantially among different vendors for regional strain analysis.
International Clinical Research Center St Anne´S Faculty Hospital Brno Czech Republic
Philips Clinical Research Board Paris France
Pôle de Recherche Cardiovasculaire Université Catholique de Louvain Brussels Belgium
Zobrazit více v PubMed
Amzulescu MS, De Craene M, Langet H, Pasquet A, Vancraeynest D, Pouleur AC, et al. Myocardial strain imaging: review of general principles, validation, and sources of discrepancies. Eur Heart J Cardiovasc Imaging. 2019;20(6):605–19. doi: 10.1093/ehjci/jez041. PubMed DOI PMC
Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications. JACC Cardiovasc Imaging. 2015;8(12):1444–60. doi: 10.1016/j.jcmg.2015.11.001. PubMed DOI
Farsalinos KE, Daraban AM, Unlu S, Thomas JD, Badano LP, Voigt JU. Head-to-head comparison of global longitudinal strain measurements among nine different vendors: the EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiography. 2015;28(10):1171–81,e2. doi: 10.1016/j.echo.2015.06.011. PubMed DOI
Nagata Y, Takeuchi M, Mizukoshi K, Wu VC, Lin FC, Negishi K, et al. Intervendor variability of two-dimensional strain using vendor-specific and vendor-independent software. J Am Soc Echocardiography. 2015;28(6):630–41. doi: 10.1016/j.echo.2015.01.021. PubMed DOI
Risum N, Ali S, Olsen NT, Jons C, Khouri MG, Lauridsen TK, et al. Variability of global left ventricular deformation analysis using vendor dependent and independent two-dimensional speckle-tracking software in adults. J Am Soc Echocardiography. 2012;25(11):1195–203. doi: 10.1016/j.echo.2012.08.007. PubMed DOI
Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. J Am Soc Echocardiography. 2015;28(2):183–93. doi: 10.1016/j.echo.2014.11.003. PubMed DOI
Cao JJ, Ngai N, Duncanson L, Cheng J, Gliganic K, Chen Q. A comparison of both DENSE and feature tracking techniques with tagging for the cardiovascular magnetic resonance assessment of myocardial strain. J Cardiovasc Magnetic Resonance. 2018;20(1):26. doi: 10.1186/s12968-018-0448-9. PubMed DOI PMC
Bucius P, Erley J, Tanacli R, Zieschang V, Giusca S, Korosoglou G, et al. Comparison of feature tracking, fast-SENC, and myocardial tagging for global and segmental left ventricular strain. ESC Heart Failure. 2019. (Epub 2019/12/05. eng). PubMed PMC
Gertz RJ, Lange T, Kowallick JT, Backhaus SJ, Steinmetz M, Staab W, et al. Inter-vendor reproducibility of left and right ventricular cardiovascular magnetic resonance myocardial feature-tracking. PloS one. 2018;13(3):e0193746. doi: 10.1371/journal.pone.0193746. PubMed DOI PMC
Barreiro-Pérez M, Curione D, Symons R, Claus P, Voigt JU, Bogaert J. Left ventricular global myocardial strain assessment comparing the reproducibility of four commercially available CMR-feature tracking algorithms. Eur Radiol. 2018;28(12):5137–47. doi: 10.1007/s00330-018-5538-4. PubMed DOI
Dobrovie M, Barreiro-Pérez M, Curione D, Symons R, Claus P, Voigt JU, et al. Inter-vendor reproducibility and accuracy of segmental left ventricular strain measurements using CMR feature tracking. Eur Radiol. 2019;29(12):6846–57. doi: 10.1007/s00330-019-06315-4. PubMed DOI
Amzulescu MS, Langet H, Saloux E, Manrique A, Boileau L, Slimani A, et al. Head-to-head comparison of global and regional two-dimensional speckle tracking strain versus cardiac magnetic resonance tagging in a multicenter validation study. Circulation Cardiovasc Imaging. 2017;10(11):e006530. 10.1161/CIRCIMAGING.117.006530 (Epub 2017/11/16. eng). PubMed
Amzulescu MS, Rousseau MF, Ahn SA, Boileau L, de Ravenstein MC, Vancraeynest D, et al. Prognostic impact of hypertrabeculation and noncompaction phenotype in dilated cardiomyopathy: a CMR study. JACC Cardiovasc Imaging. 2015;8(8):934–46. doi: 10.1016/j.jcmg.2015.04.015. PubMed DOI
Moody WE, Taylor RJ, Edwards NC, Chue CD, Umar F, Taylor TJ, et al. Comparison of magnetic resonance feature tracking for systolic and diastolic strain and strain rate calculation with spatial modulation of magnetization imaging analysis. J Magnetic Resonance Imaging. 2015;41(4):1000–12. doi: 10.1002/jmri.24623. PubMed DOI
Ohyama Y, Ambale-Venkatesh B, Chamera E, Shehata ML, Corona-Villalobos CP, Zimmerman SL, et al. Comparison of strain measurement from multimodality tissue tracking with strain-encoding MRI and harmonic phase MRI in pulmonary hypertension. Int J Cardiol. 2015;182:342–8. doi: 10.1016/j.ijcard.2015.01.016. PubMed DOI
Lu JC, Connelly JA, Zhao L, Agarwal PP, Dorfman AL. Strain measurement by cardiovascular magnetic resonance in pediatric cancer survivors: validation of feature tracking against harmonic phase imaging. Pediat Radiol. 2014;44(9):1070–6. doi: 10.1007/s00247-014-2992-2. PubMed DOI
Kuetting DLR, Feisst A, Dabir D, Homsi R, Sprinkart AM, Luetkens J, et al. Comparison of magnetic resonance feature tracking with CSPAMM HARP for the assessment of global and regional layer specific strain. Int J Cardiol. 2017;244:340–6. doi: 10.1016/j.ijcard.2017.06.026. PubMed DOI
Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, et al. Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging. 2010;3(2):144–51. doi: 10.1016/j.jcmg.2009.11.006. PubMed DOI
Augustine D, Lewandowski AJ, Lazdam M, Rai A, Francis J, Myerson S, et al. Global and regional left ventricular myocardial deformation measures by magnetic resonance feature tracking in healthy volunteers: comparison with tagging and relevance of gender. J Cardiovasc Magnetic Reson. 2013;15:8. doi: 10.1186/1532-429X-15-8. PubMed DOI PMC
Singh A, Steadman CD, Khan JN, Horsfield MA, Bekele S, Nazir SA, et al. Intertechnique agreement and interstudy reproducibility of strain and diastolic strain rate at 15 and 3 Tesla: a comparison of feature-tracking and tagging in patients with aortic stenosis. J Magnetic Reson Imaging. 2015;41(4):1129–37. doi: 10.1002/jmri.24625. PubMed DOI
Graham-Brown MP, Gulsin GS, Parke K, Wormleighton J, Lai FY, Athithan L, et al. A comparison of the reproducibility of two cine-derived strain software programmes in disease states. Eur J Radiol. 2019;113:51–8. doi: 10.1016/j.ejrad.2019.01.026. PubMed DOI
Wehner GJ, Jing L, Haggerty CM, Suever JD, Chen J, Hamlet SM, et al. Comparison of left ventricular strains and torsion derived from feature tracking and DENSE CMR. J Cardiovas Magnetic Reson. 2018;20(1):63. doi: 10.1186/s12968-018-0485-4. PubMed DOI PMC
Amzulescu M, Langet H, Saloux E, Manrique A, Slimani A, Allain P, et al. Validation of global and regional 3D speckle tracking strain vs 3D cardiac magnetic resonance tagging. Eur Heart J. 2017 2017. PubMed
Massie BM, Fisher SG, Radford M, Deedwania PC, Singh BN, Fletcher RD, et al. Effect of amiodarone on clinical status and left ventricular function in patients with congestive heart failure CHF-STAT investigators. Circulation. 1996;93(12):2128–34. doi: 10.1161/01.CIR.93.12.2128. PubMed DOI
Harrild DM, Han Y, Geva T, Zhou J, Marcus E, Powell AJ. Comparison of cardiac MRI tissue tracking and myocardial tagging for assessment of regional ventricular strain. Int J Cardiovasc Imaging. 2012;28(8):2009–18. doi: 10.1007/s10554-012-0035-3. PubMed DOI PMC
Wu L, Germans T, Guclu A, Heymans MW, Allaart CP, van Rossum AC. Feature tracking compared with tissue tagging measurements of segmental strain by cardiovascular magnetic resonance. J Cardiovasc Magnetic Reson. 2014;16:10. doi: 10.1186/1532-429X-16-10. PubMed DOI PMC
Romano S, Judd RM, Kim RJ, Kim HW, Klem I, Heitner JF, et al. Feature-tracking global longitudinal strain predicts death in a multicenter population of patients with ischemic and nonischemic dilated cardiomyopathy incremental to ejection fraction and late gadolinium enhancement. JACC Cardiovasc Imaging. 2018;11(10):1419–29. doi: 10.1016/j.jcmg.2017.10.024. PubMed DOI PMC
Mordi I, Bezerra H, Carrick D, Tzemos N. The combined incremental prognostic value of LVEF, late gadolinium enhancement, and global circumferential strain assessed by CMR. JACC Cardiovasc Imaging. 2015;8(5):540–9. doi: 10.1016/j.jcmg.2015.02.005. PubMed DOI
Riffel JH, Keller MG, Rost F, Arenja N, Andre F, Siepen AF, et al. Left ventricular long axis strain: a new prognosticator in non-ischemic dilated cardiomyopathy? J Cardiovasc Magnetic Reson. 2016;18(1):36. doi: 10.1186/s12968-016-0255-0. PubMed DOI PMC
Bhatti S, Vallurupalli S, Ambach S, Magier A, Watts E, Truong V, et al. Myocardial strain pattern in patients with cardiac amyloidosis secondary to multiple myeloma: a cardiac MRI feature tracking study. Int J Cardiovasc Imaging. 2018;34(1):27–33. doi: 10.1007/s10554-016-0998-6. PubMed DOI
Kuetting DL, Homsi R, Sprinkart AM, Luetkens J, Thomas DK, Schild HH, et al. Quantitative assessment of systolic and diastolic function in patients with LGE negative systemic amyloidosis using CMR. Int J Cardiol. 2017;232:336–41. doi: 10.1016/j.ijcard.2016.12.054. PubMed DOI
Saito M, Okayama H, Yoshii T, Higashi H, Morioka H, Hiasa G, et al. Clinical significance of global two-dimensional strain as a surrogate parameter of myocardial fibrosis and cardiac events in patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2012;13(7):617–23. doi: 10.1093/ejechocard/jer318. PubMed DOI
Morton G, Schuster A, Jogiya R, Kutty S, Beerbaum P, Nagel E. Inter-study reproducibility of cardiovascular magnetic resonance myocardial feature tracking. J Cardiovasc Magnetic Reson. 2012;14:43. doi: 10.1186/1532-429X-14-43. PubMed DOI PMC
Houard L, Militaru S, Tanaka K, Pasquet A, Vancraeynest D, Vanoverschelde JL, et al. Test-retest reliability of left and right ventricular systolic function by new and conventional echocardiographic and cardiac magnetic resonance parameters. Eur Heart J Cardiovasc Imaging. 2020(in press). Epub 2020/08/15. PubMed
Taylor RJ, Moody WE, Umar F, Edwards NC, Taylor TJ, Stegemann B, et al. Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: normal values. Eur Heart J Cardiovasc Imaging. 2015;16(8):871–81. doi: 10.1093/ehjci/jev006. PubMed DOI
Vo HQ, Marwick TH, Negishi K. MRI-derived myocardial strain measures in normal subjects. JACC Cardiovasc Imaging. 2018;11(2 Pt 1):196–205. doi: 10.1016/j.jcmg.2016.12.025. PubMed DOI