Dose-Lowering in Contrast-Enhanced MRI of the Central Nervous System: A Retrospective, Parallel-Group Comparison Using Gadobenate Dimeglumine

. 2021 Nov ; 54 (5) : 1660-1675. [epub] 20210520

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, multicentrická studie, randomizované kontrolované studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid34018290

BACKGROUND: Concerns over gadolinium (Gd) retention encourage the use of lower Gd doses. However, lower Gd doses may compromise imaging performance. Higher relaxivity gadobenate may be suited to reduced dose protocols. PURPOSE: To compare 0.05 mmol/kg and 0.1 mmol/kg gadobenate in patients undergoing enhanced MRI of the central nervous system (CNS). STUDY TYPE: Retrospective, multicenter. POPULATION: Three hundred and fifty-two patients receiving 0.05 (n = 181) or 0.1 (n = 171) mmol/kg gadobenate. FIELD STRENGTH/SEQUENCES: 1.5 T and 3.0 T/precontrast and postcontrast T1-weighted spin echo/fast spin echo (SE/FSE) and/or gradient echo/fast field echo (GRE/FFE); precontrast T2-weighted FSE and T2-FLAIR. ASSESSMENT: Images of patients with extra-axial lesions at 1.5 T or any CNS lesion at 3.0 T were reviewed by three blinded, independent neuroradiologists for qualitative (lesion border delineation, internal morphology visualization, contrast enhancement; scores from 1 = poor to 4 = excellent) and quantitative (lesion-to-brain ratio [LBR], contrast-to-noise ratio [CNR]; SI measurements at regions-of-interest on lesion and normal parenchyma) enhancement measures. Noninferiority of 0.05 mmol/kg gadobenate was determined for each qualitative endpoint if the lower limit of the 95% confidence interval (CI) for the difference in precontrast + postcontrast means was above a noninferiority margin of -0.4. STATISTICAL TESTS: Student's t-test for comparison of mean qualitative endpoint scores, Wilcoxon signed rank test for comparison of LBR and CNR values; Wilcoxon rank sum test for comparison of SI changes. Tests were significant for P < 0.05. RESULTS: The mean change from precontrast to precontrast + postcontrast was significant for all endpoints. Readers 1, 2, and 3 evaluated 304, 225, and 249 lesions for 0.05 mmol/kg gadobenate, and 382, 309, and 298 lesions for 0.1 mmol/kg gadobenate. The lower limit of the 95% CI was above -0.4 for all comparisons. Significantly, higher LBR and CNR was observed with the higher dose. DATA CONCLUSION: 0.05 mmol/kg gadobenate was noninferior to 0.1 mmol/kg gadobenate for lesion visualization. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 3.

Zobrazit více v PubMed

Gulani V, Calamante F, Shellock FG, Kanal E, Reeder SB, International Society for Magnetic Resonance in Medicine . Gadolinium deposition in the brain: Summary of evidence and recommendations. Lancet Neurol 2017;16:564‐570. PubMed

Mathur M, Jones JR, Weinreb JC. Gadolinium deposition and nephrogenic systemic fibrosis: A radiologist's primer. Radiographics 2020;40:153‐162. PubMed

American College of Radiology . Manual on Contrast Media. Version 2020. http://www.acr.org. Accessed September 18, 2020.

Welk B, McArthur E, Morrow SA, et al. Association between gadolinium contrast exposure and the risk of parkinsonism. JAMA 2016;316:96‐98. PubMed

Ackermans N, Taylor C, Tam R, et al. Effect of different doses of gadolinium contrast agent on clinical outcomes in MS. Mult Scler J Exp Transl Clin 2019;5(1):2055217318823796. PubMed PMC

Cocozza S, Pontillo G, Lanzillo R, et al. MRI features suggestive of gadolinium retention do not correlate with expanded disability status scale worsening in multiple sclerosis. Neuroradiology 2019;61:155‐162. PubMed

Zivadinov R, Bergsland N, Hagemeier J, et al. Cumulative gadodiamide administration leads to brain gadolinium deposition in early MS. Neurology 2019;93:e611‐e623. PubMed PMC

Vymazal J, Krámská L, Brožová H, Růžička E, Rulseh AM. Does serial administration of gadolinium‐based contrast agents affect patient neurological and neuropsychological status? Fourteen‐year follow‐up of patients receiving more than fifty contrast administrations. J Magn Reson Imaging 2020;51:1912‐1913. PubMed PMC

Shen Y, Goerner FL, Snyder C, et al. T1 Relaxivities of gadolinium‐based magnetic resonance contrast agents in human whole blood at 1.5, 3, and 7 T. Invest Radiol 2015;50:330‐338. PubMed

Maravilla KR, Maldjian JA, Schmalfuss IM, et al. Contrast enhancement of central nervous system lesions: Multicenter intraindividual crossover comparative study of two MR contrast agents. Radiology 2006;240:389‐400. PubMed

Rumboldt Z, Rowley HA, Steinberg F, et al. Multicenter, double‐blind, randomized, intra‐individual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine in MRI of brain tumors at 3 tesla. J Magn Reson Imaging 2009;29:760‐767. PubMed PMC

Rowley HA, Scialfa G, Gao PY, et al. Contrast‐enhanced MR imaging of brain lesions: A large‐scale intraindividual crossover comparison of gadobenate dimeglumine versus gadodiamide. AJNR Am J Neuroradiol 2008;29:1684‐1691. PubMed PMC

Seidl Z, Vymazal J, Mechl M, et al. Does higher gadolinium concentration play a role in the morphologic assessment of brain tumors? Results of a multicenter intraindividual crossover comparison of gadobutrol versus gadobenate dimeglumine (the MERIT study). AJNR Am J Neuroradiol 2012;33:1050‐1058. PubMed PMC

Vaneckova M, Herman M, Smith MP, et al. The benefits of high relaxivity for brain tumor imaging: Results of a multicenter intraindividual crossover comparison of gadobenate dimeglumine with gadoterate meglumine (the BENEFIT study). AJNR Am J Neuroradiol 2015;36:1589‐1598. PubMed PMC

Kanal E, Maravilla K, Rowley HA. Gadolinium contrast agents for CNS imaging: Current concepts and clinical evidence. AJNR Am J Neuroradiol 2014;35:2215‐2226. PubMed PMC

Elster AD, Moody DM, Ball MR, Laster DW. Is Gd‐DTPA required for routine cranial MR imaging? Radiology 1989;173:231‐238. PubMed

Montgomery AA, Graham A, Evans PH, Fahey T. Inter‐rater agreement in the scoring of abstracts submitted to a primary care research conference. BMC Health Serv Res 2002;2:8‐12. PubMed PMC

Huang B, Liang CH, Liu HJ, et al. Low dose contrast‐enhanced magnetic resonance imaging of brain metastases at 3.0T using high‐relaxivity contrast agents. Acta Radiol 2012;51:78‐84. PubMed

Khouri Chalouhi K, Papini GD, Bandirali M, Sconfienza LM, Di Leo G, Sardanelli F. Less is better? Intraindividual and interindividual comparison between 0.075 mmol/kg of gadobenate dimeglumine and 0.1 mmol/kg of gadoterate meglumine for cranial MRI. Eur J Radiol 2014;83:1245‐1249. PubMed

Crisi G, Filice S, Erb G, Bozzetti F. Effectiveness of a high relaxivity contrast agent administered at half dose in dynamic susceptibility contrast MRI of brain gliomas. J Magn Reson Imaging 2017;45:500‐506. PubMed

Filice S, Crisi G, Erb G. T2*‐correction in dynamic contrast‐enhanced magnetic resonance imaging of glioblastoma from a half dose of high‐Relaxivity contrast agent. J Comput Assist Tomogr 2017;41:816‐821. PubMed

Rehnitz C, Do T, Klaan B, et al. Feasibility of using half‐dose Gd‐BOPTA for delayed gadolinium‐enhanced MRI of cartilage (dGEMRIC) at the knee, compared with standard‐dose Gd‐DTPA. J Magn Reson Imaging 2020;51:144‐154. PubMed

Cheong BY, Duran C, Preventza OA, Muthupillai R. Comparison of low‐dose higher‐relaxivity and standard‐dose lower‐relaxivity contrast media for delayed‐enhancement MRI: A blinded randomized crossover study. AJR Am J Roentgenol 2015;205:533‐539. PubMed

Balci NC, Inan N, Anik Y, Erturk MS, Ural D, Demirci A. Low‐dose gadobenate dimeglumine versus standard‐dose gadopentate dimeglumine for delayed contrast‐enhanced cardiac magnetic resonance imaging. Acad Radiol 2006;13:833‐839. PubMed

Bauner KU, Reiser MF, Huber AM. Low dose gadobenate dimeglumine for imaging of chronic myocardial infarction in comparison with standard dose gadopentetate dimeglumine. Invest Radiol 2009;44:95‐104. PubMed

Schneider G, Maas R, Schultze Kool L, et al. Low‐dose gadobenate dimeglumine versus standard dose gadopentetate dimeglumine for contrast‐enhanced magnetic resonance imaging of the liver: An intra‐individual crossover comparison. Invest Radiol 2003;38:85‐94. PubMed

Balériaux D, Colosimo C, Ruscalleda J, et al. Magnetic resonance imaging of metastatic disease to the brain with gadobenate dimeglumine. Neuroradiology 2002;44:191‐203. PubMed

Schneider G, Kirchin MA, Pirovano G, et al. Gadobenate dimeglumine‐enhanced magnetic resonance imaging of intracranial metastases: Effect of dose on lesion detection and delineation. J Magn Reson Imaging 2001;14:525‐539. PubMed

Kuhn MJ, Picozzi P, Maldjian JA, et al. Evaluation of intraaxial enhancing brain tumors on magnetic resonance imaging: Intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for visualization and assessment, and implications for surgical intervention. J Neurosurg 2007;106:557‐566. PubMed

Schneider G, Schürholz H, Kirchin MA, Bücker A, Fries P. Safety and adverse effects during 24 hours after contrast‐enhanced MRI with gadobenate dimeglumine (MultiHance) in children. Pediatr Radiol 2013;43:202‐211. PubMed

Enterline DS, Martin KW, Parmar HA, Triulzi FM, Colosimo C. Safety and diagnostic efficacy of gadobenate dimeglumine in MRI of the brain and spine of neonates and infants. AJNR Am J Neuroradiol 2019;40:2001‐2009. PubMed PMC

MultiHance prescribing information in the USA . https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021357s016s017,021358s015s016lbl.pdf. Accessed 22 September, 2020.

Woolen SA, Shankar PR, Gagnier JJ, MacEachern MP, Singer L, Davenport MS. Risk of nephrogenic systemic fibrosis in patients with stage 4 or 5 chronic kidney disease receiving a group II gadolinium‐based contrast agent: A systematic review and meta‐analysis. JAMA Intern Med 2020;180:223‐230. PubMed PMC

Kanal E, Patton TJ, Krefting I, Wang C. Nephrogenic systemic fibrosis risk assessment and skin biopsy quantification in patients with renal disease following gadobenate contrast administration. AJNR Am J Neuroradiol 2020;41:393‐399. PubMed PMC

Murata N, Gonzalez‐Cuyar LF, Murata K, et al. Macrocyclic and other non‐group 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: Preliminary results from 9 patients with Normal renal function. Invest Radiol 2016;51:447‐453. PubMed

Stanescu AL, Shaw DW, Murata N, et al. Brain tissue gadolinium retention in pediatric patients after contrast‐enhanced magnetic resonance exams: Pathological confirmation. Pediatr Radiol 2020;50:388‐396. PubMed

Fingerhut S, Sperling M, Holling M, et al. Gadolinium‐based contrast agents induce gadolinium deposits in cerebral vessel walls, while the neuropil is not affected: An autopsy study. Acta Neuropathol 2018;136:127‐138. PubMed

Kiviniemi A, Gardberg M, Ek P, Frantzén J, Bobacka J, Minn H. Gadolinium retention in gliomas and adjacent normal brain tissue: Association with tumor contrast enhancement and linear/macrocyclic agents. Neuroradiology 2019;61:535‐544. PubMed

Bussi S, Penard L, Bonafè R, et al. Non‐clinical assessment of safety and gadolinium deposition after cumulative administration of gadobenate dimeglumine (MultiHance®) to neonatal and juvenile rats. Regul Toxicol Pharmacol 2018;92:268‐277. PubMed

MultiHance Product Monograph, Canada . https://pdf.hres.ca/dpd_pm/00053801.PDF. Accessed 30 December 2020

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...