A comparative study of synthetic winged peptides for absolute protein quantification

. 2021 May 25 ; 11 (1) : 10880. [epub] 20210525

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34035340
Odkazy

PubMed 34035340
PubMed Central PMC8149832
DOI 10.1038/s41598-021-90087-9
PII: 10.1038/s41598-021-90087-9
Knihovny.cz E-zdroje

A proper internal standard choice is critical for accurate, precise, and reproducible mass spectrometry-based proteomics assays. Synthetic isotopically labeled (SIL) proteins are currently considered the gold standard. However, they are costly and challenging to obtain. An alternative approach uses SIL peptides or SIL "winged" peptides extended at C- or/and N-terminus with an amino acid sequence or a tag cleaved during enzymatic proteolysis. However, a consensus on the design of a winged peptide for absolute quantification is missing. In this study, we used human serum albumin as a model system to compare the quantitative performance of reference SIL protein with four different designs of SIL winged peptides: (i) commercially available SIL peptides with a proprietary trypsin cleavable tag at C-terminus, (ii) SIL peptides extended with five amino acid residues at C-terminus, (iii) SIL peptides extended with three and (iv) with five amino acid residues at both C- and N-termini. Our results demonstrate properties of various SIL extended peptides designs, e.g., water solubility and efficiency of trypsin enzymatic cleavage with primary influence on quantitative performance. SIL winged peptides extended with three amino acids at both C- and N-termini demonstrated optimal quantitative performance, equivalent to the SIL protein.

Zobrazit více v PubMed

Brun V, Masselon C, Garin J, Dupuis A. Isotope dilution strategies for absolute quantitative proteomics. J. Proteomics. 2009;72:740–749. doi: 10.1016/j.jprot.2009.03.007. PubMed DOI

Gillette MA, Carr SA. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat. Methods. 2013;10:28–34. doi: 10.1038/nmeth.2309. PubMed DOI PMC

Oeckl P, Steinacker P, Otto M. Comparison of internal standard approaches for SRM analysis of alpha-synuclein in cerebrospinal fluid. J. Proteome Res. 2018;17:516–523. doi: 10.1021/acs.jproteome.7b00660. PubMed DOI

Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537:347–355. doi: 10.1038/nature19949. PubMed DOI

Vidova V, Spacil Z. A review on mass spectrometry-based quantitative proteomics: Targeted and data independent acquisition. Anal. Chim. Acta. 2017;964:7–23. doi: 10.1016/j.aca.2017.01.059. PubMed DOI

Bronsema KJ, Bischoff R, van de Merbel NC. Internal standards in the quantitative determination of protein biopharmaceuticals using liquid chromatography coupled to mass spectrometry. J. Chromatogr. B. 2012;893–894:1–14. doi: 10.1016/j.jchromb.2012.02.021. PubMed DOI

Bronsema KJ, Bischoff R, Van De Merbel NC. High-sensitivity LC-MS/MS quantification of peptides and proteins in complex biological samples: The impact of enzymatic digestion and internal standard selection on method performance. Anal. Chem. 2013;85:9528–9535. doi: 10.1021/ac4015116. PubMed DOI

Cao J, et al. A rapid, reproducible, on-the-fly orthogonal array optimization method for targeted protein quantification by lc/ms and its application for accurate and sensitive quantification of carbonyl reductases in human liver. Anal. Chem. 2010;82:2680–2689. doi: 10.1021/ac902314m. PubMed DOI PMC

Ludwig KR, Schroll MM, Hummon AB. Comparison of in-solution, FASP, and S-trap based digestion methods for bottom-up proteomic. Studies. 2018;17:2480. doi: 10.1021/acs.jproteome.8b00235. PubMed DOI PMC

Lowenthal MS, Liang Y, Phinney KW, Stein SE. Quantitative bottom-up proteomics depends on digestion conditions. Anal. Chem. 2014;86:551–558. doi: 10.1021/ac4027274. PubMed DOI

Scott KB, Turko IV, Phinney KW. Quantitative performance of internal standard platforms for absolute protein quantification using multiple reaction monitoring-mass spectrometry. Anal. Chem. 2015;87:4429–4435. doi: 10.1021/acs.analchem.5b00331. PubMed DOI

Shuford CM, et al. Absolute protein quantification by mass spectrometry: Not as simple as advertised. Anal. Chem. 2017;89:7406–7415. doi: 10.1021/acs.analchem.7b00858. PubMed DOI

Nouri-Nigjeh E, et al. Effects of calibration approaches on the accuracy for LC-MS targeted quantification of therapeutic protein. Anal. Chem. 2014;86:3575–3584. doi: 10.1021/ac5001477. PubMed DOI PMC

Faria M, et al. Comparison of a stable isotope labeled (SIL) peptide and an extended SIL peptide as internal standards to track digestion variability of an unstable signature peptide during quantification of a cancer biomarker, human osteopontin, from plasma using capill. J. Chromatogr. B. 2015;1001:156–168. doi: 10.1016/j.jchromb.2015.05.040. PubMed DOI

Faria M, et al. An extended stable isotope-labeled signature peptide internal standard for tracking immunocapture of human plasma osteopontin for LC-MS/MS quantification. Biomed. Chromatogr. 2015;29:1780–1782. doi: 10.1002/bmc.3471. PubMed DOI

Arnold SL, Stevison F, Isoherranen N. Impact of sample matrix on accuracy of peptide quantification: Assessment of calibrator and internal standard selection and method validation. Anal. Chem. 2016;88:746–753. doi: 10.1021/acs.analchem.5b03004. PubMed DOI PMC

Ocaña MF, Neubert H. An immunoaffinity liquid chromatography-tandem mass spectrometry assay for the quantitation of matrix metalloproteinase 9 in mouse serum. Anal. Biochem. 2010;399:202–210. doi: 10.1016/j.ab.2010.01.002. PubMed DOI

Jiang H, et al. Fully validated LC-MS/MS assay for the simultaneous quantitation of coadministered therapeutic antibodies in cynomolgus monkey serum. Anal. Chem. 2013;85:9859–9867. doi: 10.1021/ac402420v. PubMed DOI

Kushnir MM, et al. Measurement of thyroglobulin by liquid chromatography: Tandem mass spectrometry in serum and plasma in the presence of antithyroglobulin autoantibodies. Clin. Chem. 2013;59:982–990. doi: 10.1373/clinchem.2012.195594. PubMed DOI PMC

Neubert H, et al. Sequential protein and peptide immunoaffinity capture for mass spectrometry-based quantification of total human β-nerve growth factor. Anal. Chem. 2013;85:1719–1726. doi: 10.1021/ac303031q. PubMed DOI

Fernández Ocaña M, et al. Clinical pharmacokinetic assessment of an anti-MAdCAM monoclonal antibody therapeutic by LC-MS/MS. Anal. Chem. 2012;84:5959–5967. doi: 10.1021/ac300600f. PubMed DOI

Barnidge DR, Hall GD, Stocker JL, Muddiman DC. Evaluation of a cleavable stable isotope labeled synthetic peptide for absolute protein quantification using LC-MS/MS. J. Proteome Res. 2004;3:658–661. doi: 10.1021/pr034124x. PubMed DOI

Peptide Analyzing Tool | Thermo Fisher Scientific: CZ. https://www.thermofisher.com/cz/en/home/life-science/protein-biology/peptides-proteins/custom-peptide-synthesis-services/peptide-analyzing-tool.html.

Peptide solubility calculator. https://pepcalc.com/peptide-solubility-calculator.php.

Anderson NL, Anderson NG. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteom. 2002;1:845–867. doi: 10.1074/mcp.R200007-MCP200. PubMed DOI

Guizado TRC. Analysis of the structure and dynamics of human serum albumin. J. Mol. Model. 2014;20:1–10. doi: 10.1007/s00894-014-2450-y. PubMed DOI

NextProt Search. https://www.nextprot.org/.

Wall MJ, Crowell AMJ, Simms GA, Liu F, Doucette AA. Implications of partial tryptic digestion in organic-aqueous solvent systems for bottom-up proteome analysis. Anal. Chim. Acta. 2011;703:194–203. doi: 10.1016/j.aca.2011.07.025. PubMed DOI

Lin Y, et al. Sodium-deoxycholate-assisted tryptic digestion and identification of proteolytically resistant proteins. Anal. Biochem. 2008;377:259–266. doi: 10.1016/j.ab.2008.03.009. PubMed DOI

Proc JL, et al. A quantitative study of the effects of chaotropic agents, surfactants, and solvents on the digestion efficiency of human plasma proteins by trypsin. J. Proteome Res. 2010;9:5422–5437. doi: 10.1021/pr100656u. PubMed DOI PMC

Brownridge P, Beynon RJ. The importance of the digest: Proteolysis and absolute quantification in proteomics. Methods. 2011;54:351–360. doi: 10.1016/j.ymeth.2011.05.005. PubMed DOI

Siepen JA, Keevil EJ, Knight D, Hubbard SJ. Prediction of missed cleavage sites in tryptic peptides aids protein identification in proteomics. J. Proteome Res. 2007;6:399–408. doi: 10.1021/pr060507u. PubMed DOI PMC

Keil, B. Specificity of Proteolysis. (Springer, 1992). 10.1007/978-3-642-48380-6.

Brun V, et al. Isotope-labeled protein standards: Toward absolute quantitative proteomics. Mol. Cell. Proteom. 2007;6:2139–2149. doi: 10.1074/mcp.M700163-MCP200. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...