The Effect of Chemical Structure of OEG Ligand Shells with Quaternary Ammonium Moiety on the Colloidal Stabilization, Cellular Uptake and Photothermal Stability of Gold Nanorods

. 2021 ; 16 () : 3407-3427. [epub] 20210518

Jazyk angličtina Země Nový Zéland Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34040371

PURPOSE: Plasmonic photothermal cancer therapy by gold nanorods (GNRs) emerges as a promising tool for cancer treatment. The goal of this study was to design cationic oligoethylene glycol (OEG) compounds varying in hydrophobicity and molecular electrostatic potential as ligand shells of GNRs. Three series of ligands with different length of OEG chain (ethylene glycol units = 3, 4, 5) and variants of quaternary ammonium salts (QAS) as terminal functional group were synthesized and compared to a prototypical quaternary ammonium ligand with alkyl chain - (16-mercaptohexadecyl)trimethylammonium bromide (MTAB). METHODS: Step-by-step research approach starting with the preparation of compounds characterized by NMR and HRMS spectra, GNRs ligand exchange evaluation through characterization of cytotoxicity and GNRs cellular uptake was used. A method quantifying the reshaping of GNRs was applied to determine the effect of ligand structure on the heat transport from GNRs under fs-laser irradiation. RESULTS: Fourteen out of 18 synthesized OEG compounds successfully stabilized GNRs in the water. The colloidal stability of prepared GNRs in the cell culture medium decreased with the number of OEG units. In contrast, the cellular uptake of OEG+GNRs by HeLa cells increased with the length of OEG chain while the structure of the QAS group showed a minor role. Compared to MTAB, more hydrophilic OEG compounds exhibited nearly two order of magnitude lower cytotoxicity in free state and provided efficient cellular uptake of GNRs close to the level of MTAB. Regarding photothermal properties, OEG compounds evoked the photothermal reshaping of GNRs at lower peak fluence (14.8 mJ/cm2) of femtosecond laser irradiation than the alkanethiol MTAB. CONCLUSION: OEG+GNRs appear to be optimal for clinical applications with systemic administration of NPs not-requiring irradiation at high laser intensity such as drug delivery and photothermal therapy inducing apoptosis.

Zobrazit více v PubMed

Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res. 2010;1:13–28. doi:10.1016/j.jare.2010.02.002 DOI

Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: a review. Talanta. 2018;184:537–556. doi:10.1016/j.talanta.2018.02.088 PubMed DOI

Bodelon G, Costas C, Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM. Gold nanoparticles for regulation of cell function and behavior. Nano Today. 2017;13:40–60. doi:10.1016/j.nantod.2016.12.014 DOI

Tong L, Wei Q, Wei A, Cheng JX. Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem Photobiol. 2009;85:21–32. doi:10.1111/j.1751-1097.2008.00507.x PubMed DOI PMC

Cao J, Sun T, Grattan KTV. Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sens Actuators B Chem. 2014;195:332–351. doi:10.1016/j.snb.2014.01.056 DOI

Murphy CJ, Gole AM, Hunyadi SE, et al. Chemical sensing and imaging with metallic nanorods. Chem Commun. 2008:544–557. doi:10.1039/B711069C PubMed DOI

Baffou G, Quidant R. Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon Rev. 2013;7:171–187. doi:10.1002/lpor.201200003 DOI

Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008;23:217–228. doi:10.1007/s10103-007-0470-x PubMed DOI

Pissuwan D, Niidome T, Cortie MB. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release. 2011;149:65–71. doi:10.1016/j.jconrel.2009.12.006 PubMed DOI

Boulais E, Lachaine R, Hatef A, Meunier M. Plasmonics for pulsed-laser cell nanosurgery: fundamentals and applications. J Photochem Photobiol C. 2013;17:26–49. doi:10.1016/j.jphotochemrev.2013.06.001 DOI

Rastinehad AR, Anastos H, Wajswol E, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci. 2019;116:18590–18596. doi:10.1073/pnas.1906929116 PubMed DOI PMC

Karakoti AS, Das S, Thevuthasan S, Seal S. PEGylated inorganic nanoparticles. Angew Chem Int Ed Engl. 2011;50:1980–1994. doi:10.1002/anie.201002969 PubMed DOI

Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine. 2011;6:715–728. doi:10.2217/nnm.11.19 PubMed DOI PMC

Pelaz B, Del Pino P, Maffre P, et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano. 2015;9:6996–7008. doi:10.1021/acsnano.5b01326 PubMed DOI

Larson TA, Joshi PP, Sokolov K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano. 2012;6:9182–9190. doi:10.1021/nn3035155 PubMed DOI PMC

Alcantar NA, Aydil ES, Israelachvili JN. Polyethylene glycol-coated biocompatible surfaces. J Biomed Mater Res. 2000;51:343–351. doi:10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO;2-D PubMed DOI

Bagley AF, Hill S, Rogers GS, Bhatia SN. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano. 2013;7:8089–8097. doi:10.1021/nn4033757 PubMed DOI PMC

Zhang X, Servos MR, Liu J. Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization. J Am Chem Soc. 2012;134:9910–9913. doi:10.1021/ja303787e PubMed DOI

Tirosh O, Barenholz Y, Katzhendler J, Priev A. Hydration of polyethylene glycol-grafted liposomes. Biophys J. 1998;74:1371–1379. doi:10.1016/S0006-3495(98)77849-X PubMed DOI PMC

Branca C, Magazù S, Maisano G, Migliardo F, Migliardo P, Romeo G. Hydration study of PEG/water mixtures by quasi elastic light scattering, acoustic and rheological measurements. J Phys Chem B. 2002;106:10272–10276. doi:10.1021/jp014345v DOI

Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51. doi:10.1016/j.addr.2015.09.012 PubMed DOI PMC

Hamidi M, Azadi A, Rafiei P. Pharmacokinetic Consequences of Pegylation. Drug Deliv. 2006;13:399–409. doi:10.1080/10717540600814402 PubMed DOI

Cho EC, Xie J, Wurm PA, Xia Y. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett. 2009;9:1080–1084. doi:10.1021/nl803487r PubMed DOI

Arvizo RR, Miranda OR, Thompson MA, et al. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 2010;10:2543–2548. doi:10.1021/nl101140t PubMed DOI PMC

Zhang Y, Pan H, Zhang P, et al. Functionalized quantum dots induce proinflammatory responses in vitro: the role of terminal functional group-associated endocytic pathways. Nanoscale. 2013;5:5919–5929. doi:10.1039/c3nr01653f PubMed DOI

Arnida J-AMM, Janát-Amsbury MM, Ray A, Peterson CM, Ghandehari H. Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages. Eur J Pharm Biopharm. 2011;77:417–423. doi:10.1016/j.ejpb.2010.11.010 PubMed DOI PMC

Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–348. doi:10.1016/j.jconrel.2016.01.020 PubMed DOI

Sandhu KK, McIntosh CM, Simard JM, Smith SW, Rotello VM. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug Chem. 2002;13:3–6. doi:10.1021/bc015545c PubMed DOI

Niidome T, Nakashima K, Takahashi H, Niidome Y. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun. 2004;1978–1979. doi:10.1039/b406189f PubMed DOI

Gao Z, Zhang L, Hu J, Sun Y. Mesenchymal stem cells: a potential targeted-delivery vehicle for anti-cancer drug, loaded nanoparticles. Nanomedicine. 2013;9:174–184. doi:10.1016/j.nano.2012.06.003 PubMed DOI

Kang S, Bhang SH, Hwang S, et al. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano. 2015;9:9678–9690. doi:10.1021/acsnano.5b02207 PubMed DOI

Mooney R, Roma L, Zhao D, et al. Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano. 2014;8:12450–12460. doi:10.1021/nn505147w PubMed DOI PMC

Link S, Burda C, Mohamed MB, Nikoobakht B, El-Sayed MA. Laser photothermal melting and fragmentation of gold nanorods: energy and laser pulse-width dependence. J Phys Chem A. 1999;103:1165–1170. doi:10.1021/jp983141k DOI

González-Rubio G, Guerrero-Martínez A, Liz-Marzán LM. Reshaping, fragmentation, and assembly of gold nanoparticles assisted by pulse lasers. Acc Chem Res. 2016;49:678–686. doi:10.1021/acs.accounts.6b00041 PubMed DOI PMC

Lapotko D. Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications. Nanomedicine. 2009;4:813–845. doi:10.2217/nnm.09.59 PubMed DOI PMC

Lukianova-Hleb EY, Hanna EY, Hafner JH, Lapotko DO. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology. 2010;21:85102. doi:10.1088/0957-4484/21/8/085102 PubMed DOI PMC

Letfullin RR, Joenathan C, George TF, Zharov VP. Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine. 2006;1:473–480. doi:10.2217/17435889.1.4.473 PubMed DOI

Hartland GV. Optical studies of dynamics in noble metal nanostructures. Chem Rev. 2011;111:3858–3887. PubMed

Stocker KM, Gezelter JD. Simulations of heat conduction at thiolate-capped gold surfaces: the role of chain length and solvent penetration. J Phys Chem C. 2013;117(15):7605–7612. doi:10.1021/jp312734f DOI

Huang J, Park J, Wang W, Murphy CJ, Cahill DG. Ultrafast thermal analysis of surface functionalized gold nanorods in aqueous solution. ACS Nano. 2013;7:589–597. doi:10.1021/nn304738u PubMed DOI

Soussi J, Volz S, Palpant B, Chalopin Y. A detailed microscopic study of the heat transfer at a water gold interface coated with a polymer. Appl Phys Lett. 2015;106:093113. doi:10.1063/1.4913905 DOI

Horiguchi Y, Honda K, Kato Y, Nakashima N, Niidome Y. Photothermal reshaping of gold nanorods depends on the passivating layers of the nanorod surfaces. Langmuir. 2008;24:12026–12031. doi:10.1021/la800811j PubMed DOI

Alper J, Hamad-Schifferli K. Effect of ligands on thermal dissipation from gold nanorods. Langmuir. 2010;26:3786–3789. doi:10.1021/la904855s PubMed DOI

Wu X, Ni Y, Zhu J, et al. Thermal transport across surfactant layers on gold nanorods in aqueous solution. ACS Appl Mater Interfaces. 2016;8:10581–10589. doi:10.1021/acsami.5b12163 PubMed DOI

Centi S, Cavigli L, Borri C, et al. Small thiols stabilize the shape of gold nanorods. J Phys Chem C. 2020;124:11132–11140. doi:10.1021/acs.jpcc.0c00737 DOI

Salajkova S, Sramek M, Malinak D, et al. Highly hydrophilic cationic gold nanorods stabilized by novel quaternary ammonium surfactant with negligible cytotoxicity. J Biophoton. 2019;12:e201900024. doi:10.1002/jbio.201900024 PubMed DOI

Vigderman L, Manna P, Zubarev ER. Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew Chem Int Ed Engl. 2012;51:636–641. doi:10.1002/anie.201107304 PubMed DOI

Zarska M, Novotny F, Havel F, et al. A two-step mechanism of cellular uptake of cationic gold nanoparticles modified by (16-mercaptohexadecyl)trimethylammonium bromide (MTAB). Bioconjug Chem. 2016;27:2558–2574. doi:10.1021/acs.bioconjchem.6b00491 PubMed DOI

Benkova M, Soukup O, Prchal L, et al. Synthesis, antimicrobial effect and lipophilicity-activity dependence of three series of dichained N-alkylammonium salts. ChemistrySelect. 2019;4:12076–12084. doi:10.1002/slct.201902357 DOI

Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15:1957–1962. doi:10.1021/cm020732l DOI

Busbee BD, Obare SO, Murphy CJ. An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater. 2003;15:414–416. doi:10.1002/adma.200390095 DOI

Edgar JA, McDonagh AM, Cortie MB. Formation of gold nanorods by a stochastic “popcorn” mechanism. ACS Nano. 2012;6:1116–1125. doi:10.1021/nn203586j PubMed DOI

Elzey S, Tsai DH, Rabb SA, Yu LL, Winchester MR, Hackley VA. Quantification of ligand packing density on gold nanoparticles using ICP-OES. Anal Bioanal Chem. 2012;403:145–149. doi:10.1007/s00216-012-5830-0 PubMed DOI

Hinterwirth H, Kappel S, Waitz T, Prohaska T, Lindner W, Lammerhofer M. Quantifying thiol ligand density of self-assembled monolayers on gold nanoparticles by inductively coupled plasma-mass spectrometry. ACS Nano. 2013;7:1129–1136. doi:10.1021/nn306024a PubMed DOI PMC

Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6:12–21. doi:10.1002/smll.200901158 PubMed DOI

Chompoosor A, Saha K, Ghosh PS, et al. The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small. 2010;6:2246–2249. doi:10.1002/smll.201000463 PubMed DOI PMC

Zhang J, Mou L, Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem Sci. 2020;11:923–936. doi:10.1039/C9SC06497D PubMed DOI PMC

Liu X, Testa B, Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm Res. 2011;28:962–977. doi:10.1007/s11095-010-0303-7 PubMed DOI

Ungell AL, Nylander S, Bergstrand S, Sjoberg A, Lennernas H. Membrane transport of drugs in different regions of the intestinal tract of the rat. J Pharm Sci. 1998;87:360–366. doi:10.1021/js970218s PubMed DOI

Goodwin JT, Conradi RA, Ho NF, Burton PS. Physicochemical determinants of passive membrane permeability: role of solute hydrogen-bonding potential and volume. J Med Chem. 2001;44:3721–3729. doi:10.1021/jm010253i PubMed DOI

Soukup O, Dolezal R, Malinak D, et al. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety. Bioorg Med Chem. 2016;24:841–848. doi:10.1016/j.bmc.2016.01.006 PubMed DOI

Soukup O, Benkova M, Dolezal R, et al. The wide-spectrum antimicrobial effect of novel N-alkyl monoquaternary ammonium salts and their mixtures; the QSAR study against bacteria. Eur J Med Chem. 2020;206:112584. doi:10.1016/j.ejmech.2020.112584 PubMed DOI

Dolezal R, Soukup O, Malinak D, et al. Towards understanding the mechanism of action of antibacterial N-alkyl-3-hydroxypyridinium salts: biological activities, molecular modeling and QSAR studies. Eur J Med Chem. 2016;121:699–711. doi:10.1016/j.ejmech.2016.05.058 PubMed DOI

Gessner A, Lieske A, Paulke B, Muller R. Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm. 2002;54:165–170. doi:10.1016/S0939-6411(02)00081-4 PubMed DOI

Elci SG, Jiang Y, Yan B, et al. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano. 2016;10:5536–5542. doi:10.1021/acsnano.6b02086 PubMed DOI

Zarska M, Sramek M, Novotny F, et al. Biological safety and tissue distribution of (16-mercaptohexadecyl)trimethylammonium bromide-modified cationic gold nanorods. Biomaterials. 2018;154:275–290. doi:10.1016/j.biomaterials.2017.10.044 PubMed DOI

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63. doi:10.1016/0022-1759(83)90303-4 PubMed DOI

Malinak D, Dolezal R, Marek J, et al. 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: synthesis and antimicrobial activity. Bioorg Med Chem Lett. 2014;24:5238–5241. doi:10.1016/j.bmcl.2014.09.060 PubMed DOI

Alkilany AM, Thompson LB, Boulos SP, Sisco PN, Murphy CJ. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv Drug Deliv Rev. 2011;64:190–199. doi:10.1016/j.addr.2011.03.005 PubMed DOI

Novotný F. ParticleRecognition, a mathematica GUI interface for analysis of complex shaped nanoparticles in micrographs. Comput Phys Commun. 2017;214:98–104. doi:10.1016/j.cpc.2016.10.007 DOI

Chon JWM, Bullen C, Zijlstra P, Gu M. Spectral encoding on gold nanorods doped in a silica sol–gel matrix and its application to high-density optical data storage. Adv Funct Mater. 2007;17:875–880. doi:10.1002/adfm.200600565 DOI

Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016;1:10–29. doi:10.1002/btm2.10003 PubMed DOI PMC

Pramod K, Indrajit R. Applications of gold nanoparticles in clinical medicine. Int J Pharm Pharm Sci. 2016;8:9–16.

Libutti SK, Paciotti GF, Byrnes AA, et al. Phase I and pharmacokinetic studies of CYT-6091, a novel PEGylated colloidal gold-rhTNF nanomedicine. Clin Cancer Res. 2010;16:6139–6149. doi:10.1158/1078-0432.CCR-10-0978 PubMed DOI PMC

Gandra N, Portz C, Nergiz SZ, Fales A, Vo-Dinh T, Singamaneni S. Inherently stealthy and highly tumor-selective gold nanoraspberries for photothermal cancer therapy. Sci Rep. 2015;5:10311. doi:10.1038/srep10311 PubMed DOI PMC

Catone D, Ciavardini A, Di Mario L, et al. Plasmon controlled shaping of metal nanoparticle aggregates by femtosecond laser-induced melting. J Phys Chem Lett. 2018;9:5002–5008. doi:10.1021/acs.jpclett.8b02117 PubMed DOI

Johnson PS, Goel M, Abbott NL, Himpsel FJ. Helical versus all-trans conformations of oligo(ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir. 2014;30:10263–10269. doi:10.1021/la500978s PubMed DOI

Zorn S, Martin N, Gerlach A, Schreiber F. Real-time PMIRRAS studies of in situ growth of C11Eg6OMe on gold and immersion effects. Phys Chem Chem Phys. 2010;12:8985–8990. doi:10.1039/b923691k PubMed DOI

Schulz F, Vossmeyer T, Bastus NG, Weller H. Effect of the spacer structure on the stability of gold nanoparticles functionalized with monodentate thiolated poly(ethylene glycol) ligands. Langmuir. 2013;29:9897–9908. doi:10.1021/la401956c PubMed DOI

Schulz F, Dahl GT, Besztejan S, et al. Ligand layer engineering to control stability and interfacial properties of nanoparticles. Langmuir. 2016;32:7897–7907. doi:10.1021/acs.langmuir.6b01704 PubMed DOI

Inkpen MS, Liu ZF, Li H, Campos LM, Neaton JB, Venkataraman L. Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat Chem. 2019;11:351–358. doi:10.1038/s41557-019-0216-y PubMed DOI

Pacchioni G. A not-so-strong bond. Nat Rev Mater. 2019;4:226. doi:10.1038/s41578-019-0094-3 DOI

Galati E, Tao H, Rossner C, Zhulina EB, Kumacheva E. Morphological transitions in patchy nanoparticles. ACS Nano. 2020;14:4577–4584. doi:10.1021/acsnano.0c00108 PubMed DOI

Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano. 2009;3:80–86. doi:10.1021/nn800702n PubMed DOI

Braun GB, Pallaoro A, Wu G, et al. Laser-activated gene silencing via gold nanoshell-siRNA conjugates. ACS Nano. 2009;3:2007–2015. doi:10.1021/nn900469q PubMed DOI

Inacio AS, Costa GN, Domingues NS, et al. Mitochondrial dysfunction is the focus of quaternary ammonium surfactant toxicity to mammalian epithelial cells. Antimicrob Agents Chemother. 2013;57:2631–2639. doi:10.1128/AAC.02437-12 PubMed DOI PMC

Nagamune H, Maeda T, Ohkura K, Yamamoto K, Nakajima M, Kourai H. Evaluation of the cytotoxic effects of bis-quaternary ammonium antimicrobial reagents on human cells. Toxicol in Vitro. 2000;14:139–147. doi:10.1016/S0887-2333(00)00003-5 PubMed DOI

Kheir MM, Wang Y, Hua L, et al. Acute toxicity of berberine and its correlation with the blood concentration in mice. Food Chem Toxicol. 2010;48:1105–1110. doi:10.1016/j.fct.2010.01.033 PubMed DOI

Ohnuma A, Yoshida T, Tajima H, et al. Didecyldimethylammonium chloride induces pulmonary inflammation and fibrosis in mice. Exp Toxicol Pathol. 2010;62:643–651. doi:10.1016/j.etp.2009.08.007 PubMed DOI

Zhang S, Ding S, Yu J, Chen X, Lei Q, Fang W. Antibacterial activity, in vitro cytotoxicity, and cell cycle arrest of gemini quaternary ammonium surfactants. Langmuir. 2015;31:12161–12169. doi:10.1021/acs.langmuir.5b01430 PubMed DOI

Docherty KM, Kulpa JCF. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 2005;7:185–189. doi:10.1039/b419172b DOI

Moore TL, Rodriguez-Lorenzo L, Hirsch V, et al. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev. 2015;44:6287–6305. doi:10.1039/C4CS00487F PubMed DOI

Muller KH, Motskin M, Philpott AJ, et al. The effect of particle agglomeration on the formation of a surface-connected compartment induced by hydroxyapatite nanoparticles in human monocyte-derived macrophages. Biomaterials. 2014;35:1074–1088. doi:10.1016/j.biomaterials.2013.10.041 PubMed DOI PMC

Liu X, Huang N, Li H, Jin Q, Ji J. Surface and size effects on cell interaction of gold nanoparticles with both phagocytic and nonphagocytic cells. Langmuir. 2013;29:9138–9148. doi:10.1021/la401556k PubMed DOI

Pamies R, Cifre JGH, Espín VF, Collado-González M, Fgd B, de la Torre JG. Aggregation behaviour of gold nanoparticles in saline aqueous media. J Nanopart Res. 2014;16:2376. doi:10.1007/s11051-014-2376-4 DOI

Tsai DH, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir. 2011;27:9302–9313. doi:10.1021/la2005425 PubMed DOI

Heinz H, Pramanik C, Heinz O, et al. Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf Sci Rep. 2017;72:1–58.

Hohenstein EG, Sherrill CD. Effects of heteroatoms on aromatic pi-pi interactions: benzene-pyridine and pyridine dimer. J Phys Chem A. 2009;113:878–886. doi:10.1021/jp809062x PubMed DOI

Mecozzi S, West AP, Dougherty DA. Cation-pi interactions in aromatics of biological and medicinal interest: electrostatic potential surfaces as a useful qualitative guide. Proc Natl Acad Sci U S A. 1996;93:10566–10571. doi:10.1073/pnas.93.20.10566 PubMed DOI PMC

Wu M, Vartanian AM, Chong GN, et al. Solution NMR analysis of ligand environment in quaternary ammonium-terminated self -assembled monolayers on gold nanoparticles: the effect of surface curvature and ligand structure. J Am Chem Soc. 2019;141:4316–4327. doi:10.1021/jacs.8b11445 PubMed DOI

Lorenz S, Hauser CP, Autenrieth B, Weiss CK, Landfester K, Mailander V. The softer and more hydrophobic the better: influence of the side chain of polymethacrylate nanoparticles for cellular uptake. Macromol Biosci. 2010;10:1034–1042. doi:10.1002/mabi.201000099 PubMed DOI

Dausend J, Musyanovych A, Dass M, et al. Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells. Macromol Biosci. 2008;8:1135–1143. doi:10.1002/mabi.200800123 PubMed DOI

Kennedy LC, Bickford LR, Lewinski NA, et al. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small. 2011;7:169–183. doi:10.1002/smll.201000134 PubMed DOI

Ali MR, Rahman MA, Wu Y, et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc Natl Acad Sci U S A. 2017;114:E3110–e8. doi:10.1073/pnas.1619302114 PubMed DOI PMC

Majumdar S, Sierra-Suarez JA, Schiffres SN, et al. Vibrational mismatch of metal leads controls thermal conductance of self-assembled monolayer junctions. Nano Lett. 2015;15:2985–2991. doi:10.1021/nl504844d PubMed DOI

Luo T, Lloyd J. Non-equilibrium molecular dynamics study of thermal energy transport in Au-SAM-Au junctions. Int J Heat Mass Transf. 2010;53:1–11. doi:10.1016/j.ijheatmasstransfer.2009.10.033 DOI

Park J, Huang J, Wang W, Murphy CJ, Cahill DG. Heat transport between Au nanorods, surrounding liquids, and solid supports. J Phys Chem C. 2012;116:26335–26341. doi:10.1021/jp308130d DOI

Schmidt AJ, Alper JD, Chiesa M, Chen G, Das SK, Hamad-Schifferli K. Probing the gold nanorod-ligand-solvent interface by plasmonic absorption and thermal decay. J Phys Chem C. 2008;112:13320–13323. doi:10.1021/jp8051888 DOI

Liu Y, Sun W, Wang K, Xu -J-J, Chen H-Y, Xia X-H. End group properties of thiols affecting the self-assembly mechanism at gold nanoparticles film as evidenced by water infrared probe. Anal Chem. 2019;91:14508–14513. doi:10.1021/acs.analchem.9b03332 PubMed DOI

Gu ZT, Wang H, Li L, et al. Heat stress induces apoptosis through transcription-independent p53-mediated mitochondrial pathways in human umbilical vein endothelial cell. Sci Rep. 2014;4. doi:10.1038/srep04469 PubMed DOI PMC

Ratto F, Matteini P, Rossi F, et al. Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomed-Nanotechnol. 2009;5:143–151. doi:10.1016/j.nano.2008.10.002 PubMed DOI

Lukianova-Hleb EY, Koneva II, Oginsky AO, La Francesca S, Lapotko DO. Selective and self-guided micro-ablation of tissue with plasmonic nanobubbles. J Surg Res. 2011;166:E3–E13. doi:10.1016/j.jss.2010.10.039 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...