Gold(I) and Silver(I) π-Complexes with Unsaturated Hydrocarbons

. 2021 May 24 ; 40 (10) : 1492-1502. [epub] 20210506

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34054181

Gold π-complexes have been studied largely in the past 2 decades because of their role in gold-catalyzed reactions. We report an experimental and theoretical investigation of the interaction between a wide range of unsaturated hydrocarbons (alkanes, alkynes, alkadienes, and allenes) and triphenylphosphine-gold(I), triphenylphosphine-silver(I), and acetonitrile-silver(I) cations. The bond dissociation energies of these complexes were determined by mass spectrometry collision-induced dissociations and their structures were studied by density functional theory calculations and infrared photodissociation spectroscopy. The results show that with the same phosphine ligand, gold binds stronger to the π-ligands than silver and thereby activates the unsaturated bond more effectively. Ligand exchange of phosphine by acetonitrile at the silver complexes increases the binding energy as well as the activation of the π-ligands. We also show that the substitution of an unsaturated bond is more important than the bond type.

Zobrazit více v PubMed

Hashmi A. S. K.; Hutchings G. J. Gold Catalysis. Angew. Chem., Int. Ed. 2006, 45, 7896–7936. 10.1002/anie.200602454. PubMed DOI

Gorin D. J.; Toste F. D. Relativistic effects in homogeneous gold catalysis. Nature 2007, 446, 395–403. 10.1038/nature05592. PubMed DOI

Hashmi A. S. K. Gold-Catalyzed Organic Reactions. Chem. Rev. 2007, 107, 3180–3211. 10.1021/cr000436x. PubMed DOI

Hashmi A. S. K.; Rudolph M. Gold catalysis in total synthesis. Chem. Soc. Rev. 2008, 37, 1766–1775. 10.1039/b615629k. PubMed DOI

Rudolph M.; Hashmi A. S. K. Gold catalysis in total synthesis-an update. Chem. Soc. Rev. 2012, 41, 2448–2462. 10.1039/c1cs15279c. PubMed DOI

Friend C. M.; Hashmi A. S. K. Gold Catalysis. Acc. Chem. Res. 2014, 47, 729–730. 10.1021/ar5000506. PubMed DOI

Hashmi A. S. K. Dual Gold Catalysis. Acc. Chem. Res. 2014, 47, 864–876. 10.1021/ar500015k. PubMed DOI

Zhang L. A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation. Acc. Chem. Res. 2014, 47, 877–888. 10.1021/ar400181x. PubMed DOI PMC

Wang Y.-M.; Lackner A. D.; Toste F. D. Development of Catalysts and Ligands for Enantioselective Gold Catalysis. Acc. Chem. Res. 2014, 47, 889–901. 10.1021/ar400188g. PubMed DOI PMC

Obradors C.; Echavarren A. M. Gold-Catalyzed Rearrangements and Beyond. Acc. Chem. Res. 2014, 47, 902–912. 10.1021/ar400174p. PubMed DOI PMC

Zhang D.-H.; Tang X.-Y.; Shi M. Gold-Catalyzed Tandem Reactions of Methylenecyclopropanes and Vinylidenecyclopropanes. Acc. Chem. Res. 2014, 47, 913–924. 10.1021/ar400159r. PubMed DOI

Fürstner A. From Understanding to Prediction: Gold- and Platinum-Based π-Acid Catalysis for Target Oriented Synthesis. Acc. Chem. Res. 2014, 47, 925–938. 10.1021/ar4001789. PubMed DOI

Alcaide B.; Almendros P. Gold-Catalyzed Cyclization Reactions of Allenol and Alkynol Derivatives. Acc. Chem. Res. 2014, 47, 939–952. 10.1021/ar4002558. PubMed DOI

Fensterbank L.; Malacria M. Molecular Complexity from Polyunsaturated Substrates: The Gold Catalysis Approach. Acc. Chem. Res. 2014, 47, 953–965. 10.1021/ar4002334. PubMed DOI

Yeom H.-S.; Shin S. Catalytic Access to α-Oxo Gold Carbenes by N–O Bond Oxidants. Acc. Chem. Res. 2014, 47, 966–977. 10.1021/ar4001839. PubMed DOI

Hashmi A. S. K. Homogeneous Gold Catalysis Beyond Assumptions and Proposals—Characterized Intermediates. Angew. Chem., Int. Ed. 2010, 49, 5232–5241. 10.1002/anie.200907078. PubMed DOI

Pernpointner M.; Hashmi A. S. K. Fully Relativistic, Comparative Investigation of Gold and Platinum Alkyne Complexes of Relevance for the Catalysis of Nucleophilic Additions to Alkynes. J. Chem. Theory Comput. 2009, 5, 2717–2725. 10.1021/ct900441f. PubMed DOI

Brooner R. E. M.; Widenhoefer R. A. Cationic, Two-Coordinate Gold π Complexes. Angew. Chem., Int. Ed. 2013, 52, 11714–11724. 10.1002/anie.201303468. PubMed DOI

Lauterbach T.; Asiri A. M.; Hashmi A. S. K. Organometallic Intermediates of Gold Catalysis. Adv. Organomet. Chem. 2014, 62, 261–297. 10.1016/b978-0-12-800976-5.00005-9. DOI

Jones A. C.Gold π-Complexes as Model Intermediates in Gold Catalysis. In Homogeneous Gold Catalysis; Slaughter L. M., Ed.; Springer International Publishing: Cham, 2015, pp 133–165. PubMed

Jašíková L.; Anania M.; Hybelbauerová S.; Roithová J. Reaction Intermediates Kinetics in Solution Investigated by Electrospray Ionization Mass Spectrometry: Diaurated Complexes. J. Am. Chem. Soc. 2015, 137, 13647–13657. 10.1021/jacs.5b08744. PubMed DOI

Wang D.; Cai R.; Sharma S.; Jirak J.; Thummanapelli S. K.; Akhmedov N. G.; Zhang H.; Liu X.; Petersen J. L.; Shi X. “Silver Effect” in Gold(I) Catalysis: An Overlooked Important Factor. J. Am. Chem. Soc. 2012, 134, 9012–9019. 10.1021/ja303862z. PubMed DOI

Homs A.; Escofet I.; Echavarren A. M. On the Silver Effect and the Formation of Chloride-Bridged Digold Complexes. Org. Lett. 2013, 15, 5782–5785. 10.1021/ol402825v. PubMed DOI PMC

Zhu Y.; Day C. S.; Zhang L.; Hauser K. J.; Jones A. C. A Unique Au–Ag–Au Triangular Motif in a Trimetallic Halonium Dication: Silver Incorporation in a Gold(I) Catalyst. Chem.—Eur. J. 2013, 19, 12264–12271. 10.1002/chem.201302152. PubMed DOI

Lu Z.; Han J.; Hammond G. B.; Xu B. Revisiting the Influence of Silver in Cationic Gold Catalysis: A Practical Guide. Org. Lett. 2015, 17, 4534–4537. 10.1021/acs.orglett.5b02224. PubMed DOI

Zhdanko A.; Maier M. E. Explanation of “Silver Effects” in Gold(I)-Catalyzed Hydroalkoxylation of Alkynes. ACS Catal. 2015, 5, 5994–6004. 10.1021/acscatal.5b01493. DOI

Jia M.; Bandini M. Counterion Effects in Homogeneous Gold Catalysis. ACS Catal. 2015, 5, 1638–1652. 10.1021/cs501902v. DOI

Yang Y.; Antoni P.; Zimmer M.; Sekine K.; Mulks F. F.; Hu L.; Zhang L.; Rudolph M.; Rominger F.; Hashmi A. S. K. Dual Gold/Silver Catalysis Involving Alkynylgold(III) Intermediates Formed by Oxidative Addition and Silver-Catalyzed C–H Activation for the Direct Alkynylation of Cyclopropenes. Angew. Chem., Int. Ed. 2019, 58, 5129–5133. 10.1002/anie.201812577. PubMed DOI

Hu L.; Dietl M. C.; Han C.; Rudolph M.; Rominger F.; Hashmi A. S. K. Au-Ag Bimetallic Catalysis Providing 3-Alkynyl Benzofurans from Phenols via Tandem C-H Alkynylation/Oxy-Alkynylation. Angew. Chem., Int. Ed. 2021, 60, 106337–10642. 10.1002/anie.202016595. PubMed DOI PMC

Škríba A.; Jašíková L.; Roithová J. Silver(I) and gold(I) complexes of diethylmalonate. Int. J. Mass Spectrom. 2012, 330–332, 226–232. 10.1016/j.ijms.2012.08.019. DOI

Jašíková L.; Roithová J. Interaction of Gold Acetylides with Gold(I) or Silver(I) Cations. Organometallics 2013, 32, 7025–7033. 10.1021/om4006774. DOI

Schröder D. Applications of Electrospray Ionization Mass Spectrometry in Mechanistic Studies and Catalysis Research. Acc. Chem. Res. 2012, 45, 1521–1532. 10.1021/ar3000426. PubMed DOI

Roithová J.; Janková Š.; Jašíková L.; Váňa J.; Hybelbauerová S. Gold–Gold Cooperation in the Addition of Methanol to Alkynes. Angew. Chem., Int. Ed. 2012, 51, 8378–8382. 10.1002/anie.201204003. PubMed DOI

Jašíková L.; Roithová J. Interaction of the Gold(I) Cation Au(PMe3)+ with Unsaturated Hydrocarbons. Organometallics 2012, 31, 1935–1942. 10.1021/om2012387. DOI

Schulz J.; Jašíková L.; Škríba A.; Roithová J. Role of Gold(I) α-Oxo Carbenes in the Oxidation Reactions of Alkynes Catalyzed by Gold(I) Complexes. J. Am. Chem. Soc. 2014, 136, 11513–11523. 10.1021/ja505945d. PubMed DOI

Dorel R.; Echavarren A. M. Gold(I)-Catalyzed Activation of Alkynes for the Construction of Molecular Complexity. Chem. Rev. 2015, 115, 9028–9072. 10.1021/cr500691k. PubMed DOI PMC

Zuccaccia D.; Belpassi L.; Tarantelli F.; Macchioni A. Ion Pairing in Cationic Olefin–Gold(I) Complexes. J. Am. Chem. Soc. 2009, 131, 3170–3171. 10.1021/ja809998y. PubMed DOI

Brooner R. E. M.; Brown T. J.; Widenhoefer R. A. Synthesis and Study of Cationic, Two-Coordinate Triphenylphosphine– Gold−π Complexes. Chem.—Eur. J. 2013, 19, 8276–8284. 10.1002/chem.201204564. PubMed DOI

Motloch P.; Blahut J.; Císařová I.; Roithová J. X-ray characterization of triphenylphosphine-gold(I) olefin π-complexes and the revision of their stability in solution. J. Organomet. Chem. 2017, 848, 114–117. 10.1016/j.jorganchem.2017.07.011. DOI

Shapiro N. D.; Toste F. D. Synthesis and structural characterization of isolable phosphine coinage metal π-complexes. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 2779–2782. 10.1073/pnas.0710500105. DOI

Hooper T. N.; Green M.; McGrady J. E.; Patel J. R.; Russell C. A. Synthesis and structural characterisation of stable cationic gold(i) alkene complexes. Chem. Commun. 2009, 3877–3879. 10.1039/b908109g. PubMed DOI

Zhu Y.; Day C. S.; Jones A. C. Synthesis and Structure of Cationic Phosphine Gold(I) Enol Ether Complexes. Organometallics 2012, 31, 7332–7335. 10.1021/om300893q. DOI

Grirrane A.; Álvarez E.; Albero J.; García H.; Corma A. Multinuclear silver(i) XPhos complexes with cyclooctatetraene: photochemical C–C bond cleavage of acetonitrile and cyanide bridged Ag cluster formation. Dalton Trans. 2016, 45, 5444–5450. 10.1039/c6dt00370b. PubMed DOI

Griebel C.; Hodges D. D.; Yager B. R.; Liu F. L.; Zhou W.; Makaravage K. J.; Zhu Y.; Norman S. G.; Lan R.; Day C. S.; Jones A. C. Bisbiphenyl Phosphines: Structure and Synthesis of Gold(I) Alkene π-Complexes with Variable Phosphine Donicity and Enhanced Stability. Organometallics 2020, 39, 2665–2671. 10.1021/acs.organomet.0c00278. DOI

Ridlen S. G.; Wu J.; Kulkarni N. V.; Dias H. V. R. Isolable Ethylene Complexes of Copper(I), Silver(I), and Gold(I) Supported by Fluorinated Scorpionates [HB{3-(CF3),5-(CH3)Pz}3]– and [HB{3-(CF3),5-(Ph)Pz}3]–. Eur. J. Inorg. Chem. 2016, 2016, 2573–2580. 10.1002/ejic.201501365. DOI

Klimovica K.; Kirschbaum K.; Daugulis O. Synthesis and Properties of “Sandwich” Diimine-Coinage Metal Ethylene Complexes. Organometallics 2016, 35, 2938–2943. 10.1021/acs.organomet.6b00487. PubMed DOI PMC

Navarro M.; Toledo A.; Joost M.; Amgoune A.; Mallet-Ladeira S.; Bourissou D. π Complexes of P̂P and P̂N chelated gold(i). Chem. Commun. 2019, 55, 7974–7977. 10.1039/c9cc04266k. PubMed DOI

Navarro M.; Toledo A.; Mallet-Ladeira S.; Sosa Carrizo E. D.; Miqueu K.; Bourissou D. Versatility and adaptative behaviour of the P̂N chelating ligand MeDalphos within gold(i) π complexes. Chem. Sci. 2020, 11, 2750–2758. 10.1039/c9sc06398f. PubMed DOI PMC

Zins E.-L.; Pepe C.; Schröder D. Energy-dependent dissociation of benzylpyridinium ions in an ion-trap mass spectrometer. J. Mass Spectrom. 2010, 45, 1253–1260. 10.1002/jms.1847. PubMed DOI

Hanzlová E.; Váňa J.; Shaffer C. J.; Roithová J.; Martinů T. Evidence for the Cyclic CN2 Carbene in the Gas Phase. Org. Lett. 2014, 16, 5482–5485. 10.1021/ol5027602. PubMed DOI

Škríba A.; Schulz J.; Roithová J. Monitoring of Reaction Intermediates in the Gas Phase: Ruthenium-Catalyzed C–C Coupling. Organometallics 2014, 33, 6868–6878. 10.1021/om500933w. DOI

Hývl J.; Roithová J. Mass Spectrometric Studies of Reductive Elimination from Pd(IV) Complexes. Org. Lett. 2014, 16, 200–203. 10.1021/ol403190g. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam N. J.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas Ö.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.

Adamo C.; Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. 10.1063/1.475428. DOI

Dunning T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI

Hay P. J.; Wadt W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. 10.1063/1.448975. DOI

Simon S.; Duran M.; Dannenberg J. J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers?. J. Chem. Phys. 1996, 105, 11024–11031. 10.1063/1.472902. DOI

Reed A. E.; Weinstock R. B.; Weinhold F. Natural population analysis. J. Chem. Phys. 1985, 83, 735–746. 10.1063/1.449486. DOI

Zhao Y.; Truhlar D. G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157–167. 10.1021/ar700111a. PubMed DOI

Jašík J.; Žabka J.; Roithová J.; Gerlich D. Infrared spectroscopy of trapped molecular dications below 4K. Int. J. Mass Spectrom. 2013, 354–355, 204–210. 10.1016/j.ijms.2013.06.007. DOI

Barnett N. J.; Slipchenko L. V.; Gordon M. S. The Binding of Ag+ and Au+ to Ethene. J. Phys. Chem. A 2009, 113, 7474–7481. 10.1021/jp900372d. PubMed DOI

Dias H. V. R.; Flores J. A.; Wu J.; Kroll P. Monomeric Copper(I), Silver(I), and Gold(I) Alkyne Complexes and the Coinage Metal Family Group Trends. J. Am. Chem. Soc. 2009, 131, 11249–11255. 10.1021/ja904232v. PubMed DOI

Gabelica V.; Pauw E. D. Internal energy and fragmentation of ions produced in electrospray sources. Mass Spectrom. Rev. 2005, 24, 566–587. 10.1002/mas.20027. PubMed DOI

Di Marco V. B.; Bombi G. G. Electrospray mass spectrometry (ESI-MS) in the study of metal–ligand solution equilibria. Mass Spectrom. Rev. 2006, 25, 347–379. 10.1002/mas.20070. PubMed DOI

Suresh C. H.; Koga N. Quantifying the Electronic Effect of Substituted Phosphine Ligands via Molecular Electrostatic Potential. Inorg. Chem. 2002, 41, 1573–1578. 10.1021/ic0109400. PubMed DOI

Gatineau D.; Lesage D.; Clavier H.; Dossmann H.; Chan C. H.; Milet A.; Memboeuf A.; Cole R. B.; Gimbert Y. Bond dissociation energies of carbonyl gold complexes: a new descriptor of ligand effects in gold(i) complexes?. Dalton Trans. 2018, 47, 15497–15505. 10.1039/c8dt03721c. PubMed DOI

Dias H. V. R.; Dash C.; Yousufuddin M.; Celik M. A.; Frenking G. Cationic Gold Carbonyl Complex on a Phosphine Support. Inorg. Chem. 2011, 50, 4253–4255. 10.1021/ic200757j. PubMed DOI

Bayler A.; Schier A.; Bowmaker G. A.; Schmidbaur H. Gold Is Smaller than Silver. Crystal Structures of [Bis(trimesitylphosphine)gold(I)] and [Bis(trimesitylphosphine)silver(I)] Tetrafluoroborate. J. Am. Chem. Soc. 1996, 118, 7006–7007. 10.1021/ja961363v. DOI

Roithová J. Characterization of reaction intermediates by ion spectroscopy. Chem. Soc. Rev. 2012, 41, 547–559. 10.1039/c1cs15133a. PubMed DOI

Roithová J.; Gray A.; Andris E.; Jašík J.; Gerlich D. Helium Tagging Infrared Photodissociation Spectroscopy of Reactive Ions. Acc. Chem. Res. 2016, 49, 223–230. 10.1021/acs.accounts.5b00489. PubMed DOI

Jašíková L.; Roithová J. Infrared Multiphoton Dissociation Spectroscopy with Free-Electron Lasers: On the Road from Small Molecules to Biomolecules. Chem.—Eur. J. 2018, 24, 3374–3390. 10.1002/chem.201705692. PubMed DOI

Škríba A.; Jašík J.; Andris E.; Roithová J. Interaction of Ruthenium(II) with Terminal Alkynes: Benchmarking DFT Methods with Spectroscopic Data. Organometallics 2016, 35, 990–994. 10.1021/acs.organomet.6b00021. DOI

Schmidbaur H.; Schier A. Gold η2-Coordination to Unsaturated and Aromatic Hydrocarbons: The Key Step in Gold-Catalyzed Organic Transformations. Organometallics 2010, 29, 2–23. 10.1021/om900900u. DOI

Nechaev M. S.; Rayón V. M.; Frenking G. Energy Partitioning Analysis of the Bonding in Ethylene and Acetylene Complexes of Group 6, 8, and 11 Metals:  (CO)5TM–C2Hx and Cl4TM–C2Hx (TM = Cr, Mo, W), (CO)4TM–C2Hx (TM = Fe, Ru, Os), and TM+–C2Hx (TM = Cu, Ag, Au). J. Phys. Chem. A 2004, 108, 3134–3142. 10.1021/jp031185+. DOI

Ziegler T.; Rauk A. A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg. Chem. 1979, 18, 1558–1565. 10.1021/ic50196a034. DOI

Lu Z.; Li T.; Mudshinge S. R.; Xu B.; Hammond G. B. Optimization of Catalysts and Conditions in Gold(I) Catalysis—Counterion and Additive Effects. Chem. Rev. 2021, 10.1021/acs.chemrev.0c00713. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...