Enhanced Expression of Human Epididymis Protein 4 (HE4) Reflecting Pro-Inflammatory Status Is Regulated by CFTR in Cystic Fibrosis Bronchial Epithelial Cells
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34054511
PubMed Central
PMC8160512
DOI
10.3389/fphar.2021.592184
PII: 592184
Knihovny.cz E-resources
- Keywords
- CFTR modulator, HE4, bronchial epithelial cell, cystic fibrosis, inflammation,
- Publication type
- Journal Article MeSH
Decreased human epididymis protein 4 (HE4) plasma levels were reported in cystic fibrosis (CF) patients under CFTR potentiator ivacaftor therapy, which inversely correlated with lung function improvement. In this study, we investigated whether HE4 expression was affected via modulation of CFTR function in CF bronchial epithelial (CFBE) cells in vitro. HE4 protein levels were measured in the supernatants of CFBE 41o- cells expressing F508del-CFTR or wild-type CFTR (wt-CFTR) after administration of lumacaftor/ivacaftor or tezacaftor/ivacaftor, while HE4 expression in CFBE 41o- cells were also analyzed following application of adenylate cyclase activators Forskolin/IBMX or CFTRinh172. The effect of all of these compounds on CFTR function was monitored by the whole-cell patch-clamp technique. Induced HE4 expression was studied with interleukin-6 (IL-6) in F508del-CFTR CFBE 41o- cells under TNF-α stimulation for 1 h up to 1 week in duration. In parallel, plasma HE4 was determined in CF subjects homozygous for p.Phe508del-CFTR mutation receiving lumacaftor/ivacaftor (Orkambi®) therapy. NF-κB-mediated signaling was observed via the nuclear translocation of p65 subunit by fluorescence microscopy together with the analysis of IL-6 expression by an immunoassay. In addition, HE4 expression was examined after NF-κB pathway inhibitor BAY 11-7082 treatment with or without CFTR modulators. CFTR modulators partially restored the activity of F508del-CFTR and reduced HE4 concentration was found in F508del-CFTR CFBE 41o- cells that was close to what we observed in CFBE 41o- cells with wt-CFTR. These data were in agreement with decreased plasma HE4 concentrations in CF patients treated with Orkambi®. Furthermore, CFTR inhibitor induced elevated HE4 levels, while CFTR activator Forskolin/IBMX downregulated HE4 in the cell cultures and these effects were more pronounced in the presence of CFTR modulators. Higher activation level of baseline and TNF-α stimulated NF-κB pathway was detected in F508del-CFTR vs. wt-CFTR CFBE 41o- cells that was substantially reduced by CFTR modulators based on lower p65 nuclear positivity and IL-6 levels. Finally, HE4 expression was upregulated by TNF-α with elevated IL-6, and both protein levels were suppressed by combined administration of NF-κB pathway inhibitor and CFTR modulators in CFBE 41o- cells. In conclusion, CFTR dysfunction contributes to abnormal HE4 expression via NF-κB in CF.
Department of Laboratory Medicine Faculty of Medicine University of Debrecen Debrecen Hungary
Department of Pediatrics Faculty of Medicine University of Debrecen Debrecen Hungary
Department of Pharmaceutical Technology Faculty of Pharmacy University of Debrecen Debrecen Hungary
See more in PubMed
Adam D., Bilodeau C., Sognigbé L., Maillé É., Ruffin M., Brochiero E. (2018). CFTR Rescue with VX-809 and VX-770 Favors the Repair of Primary Airway Epithelial Cell Cultures from Patients with Class II Mutations in the Presence of Pseudomonas aeruginosa Exoproducts. J. Cystic Fibrosis 17, 705–714. 10.1016/j.jcf.2018.03.010 PubMed DOI
Barnaby R., Koeppen K., Nymon A., Hampton T. H., Berwin B., Ashare A., et al. (2018). Lumacaftor (VX-809) Restores the Ability of CF Macrophages to Phagocytose and Kill Pseudomonas aeruginosa . Am. J. Physiol.-Lung Cell Mol. Physiol. 314, L432–L438. 10.1152/ajplung.00461.2017 PubMed DOI PMC
Bene Z., Fejes Z., Macek M., Jr., Amaral M. D., Balogh I., Nagy B., Jr. (2020). Laboratory Biomarkers for Lung Disease Severity and Progression in Cystic Fibrosis. Clinica Chim. Acta 508, 277–286. 10.1016/j.cca.2020.05.015 PubMed DOI
Billet A., Froux L., Hanrahan J. W., Becq F. (2017). Development of Automated Patch Clamp Technique to Investigate CFTR Chloride Channel Function. Front. Pharmacol. 8, 195. 10.3389/fphar.2017.00195 PubMed DOI PMC
Bingle L., Cross S. S., High A. S., Wallace W. A., Rassl D., Yuan G., et al. (2006). WFDC2 (HE4): a Potential Role in the Innate Immunity of the Oral Cavity and Respiratory Tract and the Development of Adenocarcinomas of the Lung. Respir. Res. 7, 61. 10.1186/1465-9921-7-61 PubMed DOI PMC
Bingle L., Tetley T. D., Bingle C. D. (2001). Cytokine-Mediated Induction of the Human Elafin Gene in Pulmonary Epithelial Cells Is Regulated by Nuclear Factor- κ B. Am. J. Respir. Cel. Mol. Biol. 25, 84–91. 10.1165/ajrcmb.25.1.4341 PubMed DOI
Bitam S., Pranke I., Hollenhorst M., Servel N., Moquereau C., Tondelier D., et al. (2015). An Unexpected Effect of TNF-α on F508del-CFTR Maturation and Function. F1000Res 4, 218. 10.12688/f1000research.6683.1 PubMed DOI PMC
Boinot C., Jollivet Souchet M., Ferru-Clément R., Becq F. (2014). Searching for Combinations of Small-Molecule Correctors to Restore F508del-Cystic Fibrosis Transmembrane Conductance Regulator Function and Processing. J. Pharmacol. Exp. Ther. 350, 624–634. 10.1124/jpet.114.214890 PubMed DOI
Bonfield T. L., Hodges C. A., Cotton C. U., Drumm M. L. (2012). Absence of the Cystic Fibrosis Transmembrane Regulator (Cftr) from Myeloid-Derived Cells Slows Resolution of Inflammation and Infection. J. Leukoc. Biol. 92, 1111–1122. 10.1189/jlb.0412188 PubMed DOI PMC
Cantin A. M., Hartl D., Konstan M. W., Chmiel J. F. (2015). Inflammation in Cystic Fibrosis Lung Disease: Pathogenesis and Therapy. J. Cystic Fibrosis 14, 419–430. 10.1016/j.jcf.2015.03.003 PubMed DOI
Chen F. E., Huang D.-B., Chen Y.-Q., Ghosh G. (1998). Crystal Structure of P50/p65 Heterodimer of Transcription Factor NF-Κb Bound to DNA. Nature 391, 410–413. 10.1038/34956 PubMed DOI
Clarke L. A., Sousa L., Barreto C., Amaral M. D. (2013). Changes in Transcriptome of Native Nasal Epithelium Expressing F508del-CFTR and Intersecting Data from Comparable Studies. Respir. Res. 14, 38. 10.1186/1465-9921-14-38 PubMed DOI PMC
De Boeck K., Amaral M. D. (2016). Progress in Therapies for Cystic Fibrosis. Lancet Respir. Med. 4, 662–674. 10.1016/s2213-2600(16)00023-0 PubMed DOI
Eidelman O., Srivastava M., Zhang J., Leighton X., Murtie J., Jozwik C., et al. (2001). Control of the Proinflammatory State in Cystic Fibrosis Lung Epithelial Cells by Genes from the TNF-Αr/nfκb Pathway. Mol. Med. 7, 523–534. 10.1007/bf03401858 PubMed DOI PMC
Favia M., Gallo C., Guerra L., De Venuto D., Diana A., Polizzi A. M., et al. (2020). Treatment of Cystic Fibrosis Patients Homozygous for F508del with Lumacaftor-Ivacaftor (Orkambi) Restores Defective CFTR Channel Function in Circulating Mononuclear Cells. Int. J. Mol. Sci. 21, 2398. 10.3390/ijms21072398 PubMed DOI PMC
Fejes Z., Czimmerer Z., Szük T., Póliska S., Horváth A., Balogh E., et al. (2018). Endothelial Cell Activation Is Attenuated by Everolimus via Transcriptional and Post-transcriptional Regulatory Mechanisms after Drug-Eluting Coronary Stenting. PLoS One 13, e0197890. 10.1371/journal.pone.0197890 PubMed DOI PMC
Hisert K. B., Heltshe S. L., Pope C., Jorth P., Wu X., Edwards R. M., et al. (2017). Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections. Am. J. Respir. Crit. Care Med. 195, 1617–1628. 10.1164/rccm.201609-1954oc PubMed DOI PMC
Hunter M. J., Treharne K. J., Winter A. K., Cassidy D. M., Land S., Mehta A. (2010). Expression of Wild-type CFTR Suppresses NF-kappaB-Driven Inflammatory Signalling. PLoS One 5, e11598. 10.1371/journal.pone.0011598 PubMed DOI PMC
Janeckova L., Pospichalova V., Fafilek B., Vojtechova M., Tureckova J., Dobes J., et al. (2015). HIC1 Tumor Suppressor Loss Potentiates TLR2/NF-Κb Signaling and Promotes Tissue Damage-Associated Tumorigenesis. Mol. Cancer Res. 13, 1139–1148. 10.1158/1541-7786.mcr-15-0033 PubMed DOI
Jarosz-Griffiths H. H., Scambler T., Wong C. H., Lara-Reyna S., Holbrook J., Martinon F., et al. (2020). Different CFTR Modulator Combinations Downregulate Inflammation Differently in Cystic Fibrosis. Elife 9, e54556. 10.7554/elife.54556 PubMed DOI PMC
Kmit A., Marson F. A. L., Pereira S. V.-N., Vinagre A. M., Leite G. S., Servidoni M. F., et al. (2019). Extent of rescue of F508del-CFTR function by VX-809 and VX-770 in human nasal epithelial cells correlates with SNP rs7512462 in SLC26A9 gene in F508del/F508del Cystic Fibrosis patients. Biochim. Biophys. Acta (Bba) - Mol. Basis Dis. 1865, 1323–1331. 10.1016/j.bbadis.2019.01.029 PubMed DOI
Lara-Reyna S., Holbrook J., Jarosz-Griffiths H. H., Peckham D., McDermott M. F. (2020). Dysregulated Signalling Pathways in Innate Immune Cells with Cystic Fibrosis Mutations. Cell. Mol. Life Sci. 77, 4485–4503. In press. 10.1007/s00018-020-03540-9 PubMed DOI PMC
Laselva O., Stone T. A., Bear C. E., Deber C. M. (2020). Anti-Infectives Restore ORKAMBI Rescue of F508del-CFTR Function in Human Bronchial Epithelial Cells Infected with Clinical Strains of P. aeruginosa . Biomolecules 10, 334. 10.3390/biom10020334 PubMed DOI PMC
Nagy B., Jr., Bene Z., Fejes Z., Heltshe S. L., Reid D., Ronan N. J., et al. (2019). Human Epididymis Protein 4 (HE4) Levels Inversely Correlate with Lung Function Improvement (Delta FEV1) in Cystic Fibrosis Patients Receiving Ivacaftor Treatment. J. Cystic Fibrosis 18, 271–277. 10.1016/j.jcf.2018.08.013 PubMed DOI
Nagy B., Jr., Nagy B., Fila L., Clarke L. A., Gönczy F., Bede O., et al. (2016). Human Epididymis Protein 4: A Novel Serum Inflammatory Biomarker in Cystic Fibrosis. Chest 150, 661–672. 10.1016/j.chest.2016.04.006 PubMed DOI
Nixon L. S., Yung B., Bell S. C., Stuart Elborn J., Shale D. J. (1998). Circulating Immunoreactive Interleukin-6 in Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 157, 1764–1769. 10.1164/ajrccm.157.6.9704086 PubMed DOI
Pranke I. M., Hatton A., Simonin J., Jais J. P., Le Pimpec-Barthes F., Carsin A., et al. (2017). Correction of CFTR Function in Nasal Epithelial Cells from Cystic Fibrosis Patients Predicts Improvement of Respiratory Function by CFTR Modulators. Sci. Rep. 7, 7375. 10.1038/s41598-017-07504-1 PubMed DOI PMC
Ramsey B. W., Davies J., McElvaney N. G., Tullis E., Bell S. C., Dřevínek P., et al. (2011). A CFTR Potentiator in Patients with Cystic Fibrosis and theG551DMutation. N. Engl. J. Med. 365, 1663–1672. 10.1056/nejmoa1105185 PubMed DOI PMC
Rowe S. M., Heltshe S. L., Gonska T., Donaldson S. H., Borowitz D., Gelfond D., et al. (2014). GOAL Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network. (Clinical Mechanism of the Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor in G551D-Mediated Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 190, 175–184. 10.1164/rccm.201404-0703oc PubMed DOI PMC
Rowe S. M., Miller S., Sorscher E. J. (2005). Cystic Fibrosis. N. Engl. J. Med. 352, 1992–2001. 10.1056/nejmra043184 PubMed DOI
Ruffin M., Roussel L., Maillé É., Rousseau S., Brochiero E. (2018). Vx-809/Vx-770 Treatment Reduces Inflammatory Response to Pseudomonas aeruginosa in Primary Differentiated Cystic Fibrosis Bronchial Epithelial Cells. Am. J. Physiol.-Lung Cell Mol. Physiol. 314, L635–L641. 10.1152/ajplung.00198.2017 PubMed DOI
Sallenave J. M., Shulmann J., Crossley J., Jordana M., Gauldie J. (1994). Regulation of Secretory Leukocyte Proteinase Inhibitor (SLPI) and Elastase-specific Inhibitor (ESI/elafin) in Human Airway Epithelial Cells by Cytokines and Neutrophilic Enzymes. Am. J. Respir. Cell Mol. Biol. 11, 733–741. 10.1165/ajrcmb.11.6.7946401 PubMed DOI
Small D. M., Doherty D. F., Dougan C. M., Weldon S., Taggart C. C. (2017). The Role of Whey Acidic Protein Four-Disulfide-Core Proteins in Respiratory Health and Disease. Biol. Chem. 398, 425–440. 10.1515/hsz-2016-0262 PubMed DOI
Stanton B. A., Coutermarsh B., Barnaby R., Hogan D. (2015). Pseudomonas aeruginosa Reduces VX-809 Stimulated F508del-CFTR Chloride Secretion by Airway Epithelial Cells. PLoS One 10, e0127742. 10.1371/journal.pone.0127742 PubMed DOI PMC
Taylor-Cousar J. L., Munck A., McKone E. F., van der Ent C. K., Moeller A., Simard C., et al. (2017). Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del. N. Engl. J. Med. 377, 2013–2023. 10.1056/nejmoa1709846 PubMed DOI
Vij N., Mazur S., Zeitlin P. L. (2009). CFTR Is a Negative Regulator of NFkappaB Mediated Innate Immune Response. PLoS One 4, e4664. 10.1371/journal.pone.0004664 PubMed DOI PMC
Wainwright C. E., Elborn J. S., Ramsey B. W., Marigowda G., Huang X., Cipolli M., et al. (2015). TRAFFIC Study Group; TRANSPORT Study GroupLumacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del CFTR. N. Engl. J. Med. 373, 220–231. 10.1056/nejmoa1409547 PubMed DOI PMC
Wang H., Cebotaru L., Lee H. W., Yang Q., Pollard B. S., Pollard H. B., et al. (2016). CFTR Controls the Activity of NF-Κb by Enhancing the Degradation of TRADD. Cell. Physiol. Biochem. 40, 1063–1078. 10.1159/000453162 PubMed DOI PMC