Expression of Drosophila Matrix Metalloproteinases in Cultured Cell Lines Alters Neural and Glial Cell Morphology
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34055768
PubMed Central
PMC8155609
DOI
10.3389/fcell.2021.610887
Knihovny.cz E-resources
- Keywords
- C6 glioblastoma, Drosophila melanogaster, SH-SY5Y neuroblastoma, apoptosis, cell line, differentiation, matrix metalloproteinases,
- Publication type
- Journal Article MeSH
Matrix metalloproteinases (MMPs) are zinc- and calcium- dependent endopeptidases that play pivotal roles in many biological processes. The expression of several MMPs in the central nervous system (CNS) have been shown to change in response to injury and various neurological/neurodegenerative disorders. While extracellular MMPs degrade the extracellular matrix (ECM) and regulate cell surface receptor signaling, the intracellular functions of MMPs or their roles in CNS disorders is unclear. Around 23 different MMPs are found in the human genome with overlapping function, making analysis of the intracellular role of human MMPs a daunting task. However, the fruit fly Drosophila melanogaster genome encodes only two MMPs: dMMP1 and dMMP2. To better understand the intracellular role of MMPs in the CNS, we expressed Green Fluorescent Protein (GFP)- tagged dMMPs in SH-SY5Y neuroblastoma cells and C6 glioblastoma cell lines. Lipofection of GFP-dMMPs in SH-SY5Y cells enhanced nuclear rupture and reduced cell viability (coupled with increased apoptosis) as compared to GFP alone. In non-liposomal transfection experiments, dMMP1 localizes to both the cytoplasm and the nucleus whereas dMMP2 had predominantly cytoplasmic localization in both neural and glial cell lines. Cytoplasmic localization demonstrated co-localization of dMMPs with cytoskeleton proteins which suggests a possible role of dMMPs in cell morphology. This was further supported by transient dMMP expression experiments that showed that dMMPs significantly increased neurite formation and length in neuronal cell lines. Inhibition of endogenous MMPs decreased neurite formation, length and βIII Tubulin protein levels in differentiated SH-SY5Y cells. Further, transient expression experiments showed similar changes in glial cell morphology, wherein dMMP expression increased glial process formation and process length. Interestingly, C6 cells expressing dMMPs had a glia-like appearance, suggesting MMPs may be involved in intracellular glial differentiation. Inhibition or suppression of endogenous MMPs in C6 cells increased process formation, increased process length, modulated GFAP protein expression, and induced distinct glial-like phenotypes. Taken together, our results strongly support the intracellular role that dMMPs can play in apoptosis, cytoskeleton remodeling, and cell differentiation. Our studies further reinforce the use of Drosophila MMPs to dissect out the precise mechanisms whereby they exert their intracellular roles in CNS disorders.
Department of Biology Tougaloo College Tougaloo MS United States
Department of Chemistry and Biochemistry Mississippi College Clinton MS United States
See more in PubMed
Abdul-Muneer P. M., Conte A. A., Haldar D., Long M., Patel R. K., Santhakumar V., et al. (2017). Traumatic brain injury induced matrix metalloproteinase2 cleaves CXCL12alpha (stromal cell derived factor 1alpha) and causes neurodegeneration. Brain Behav. Immun. 59 190–199. 10.1016/j.bbi.2016.09.002 PubMed DOI
Ali M. A., Jung C. W., Hudson B., Kassiri Z., Granzier H., Schulz R. (2010). Titin is a target of matrix metalloproteinase-2: implications in myocardial ischemia/reperfusion injury. Circulation 122 2039–2047. 10.1161/CIRCULATIONAHA.109.930222 PubMed DOI PMC
Annese V., Herrero M. T., Di Pentima M., Gomez A., Lombardi L., Ros C. M., et al. (2014). Metalloproteinase-9 contributes to inflammatory glia activation and nigro-striatal pathway degeneration in both mouse and monkey models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Brain Struct. Funct. 220 703–727. 10.1007/s00429-014-0718-8 PubMed DOI
Barkho B. Z., Munoz A. E., Li X., Li L., Cunningham L. A., Zhao X. (2008). Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 26 3139–3149. 10.1634/stemcells.2008-0519 PubMed DOI PMC
Ben-Shlomo I., Goldman S., Shalev E. (2003). Regulation of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of MMP, and progesterone secretion in luteinized granulosa cells from normally ovulating women with polycystic ovary disease. Fertil. Steril. 79 694–701. 10.1016/s0015-0282(02)04814-8 PubMed DOI
Bildyug N. (2016). Matrix metalloproteinases: an emerging role in regulation of actin microfilament system. Biomol. Concepts 7 321–329. 10.1515/bmc-2016-0022 PubMed DOI
Bildyug N. B., Voronkina I. V., Smagina L. V., Yudintseva N. M., Pinaev G. P. (2015). Matrix metalloproteinases in primary culture of cardiomyocytes. Biochemistry 80 1318–1326. 10.1134/S0006297915100132 PubMed DOI
Bodden M. K., Harber G. J., Birkedal-Hansen B., Windsor L. J., Caterina N. C., Engler J. A., et al. (1994). Functional domains of human TIMP-1 (tissue inhibitor of metalloproteinases). J. Biol. Chem. 269 18943–18952. PubMed
Brkic M., Balusu S., Libert C., Vandenbroucke R. E. (2015a). Friends or foes: matrix metalloproteinases and their multifaceted roles in neurodegenerative diseases. Mediators Inflamm. 2015:620581. 10.1155/2015/620581 PubMed DOI PMC
Brkic M., Balusu S., Van Wonterghem E., Gorle N., Benilova I., Kremer A., et al. (2015b). Amyloid beta oligomers disrupt blood-csf barrier integrity by activating matrix metalloproteinases. J. Neurosci. 35 12766–12778. 10.1523/JNEUROSCI.0006-15.2015 PubMed DOI PMC
Butler G. S., Overall C. M. (2009). Updated biological roles for matrix metalloproteinases and new “intracellular” substrates revealed by degradomics. Biochemistry 48 10830–10845. 10.1021/bi901656f PubMed DOI
Chao C. C., Kan D., Lo T. H., Lu K. S., Chien C. L. (2015). Induction of neural differentiation in rat C6 glioma cells with taxol. Brain Behav. 5:e00414. 10.1002/brb3.414 PubMed DOI PMC
Craig V. J., Zhang L., Hagood J. S., Owen C. A. (2015). Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol. 53 585–600. 10.1165/rcmb.2015-0020TR PubMed DOI PMC
Cryns V., Yuan J. (1998). Proteases to die for. Genes Dev. 12 1551–1570. 10.1101/gad.12.11.1551 PubMed DOI
Datki Z., Juhasz A., Galfi M., Soos K., Papp R., Zadori D., et al. (2003). Method for measuring neurotoxicity of aggregating polypeptides with the MTT assay on differentiated neuroblastoma cells. Brain Res. Bull. 62 223–229. 10.1016/j.brainresbull.2003.09.011 PubMed DOI
De Simone D. W., Mecham R. (2013). Extracellular Matrix in Development. Berlin: Springer-Verlag, 10.1007/978-3-642-35935-4 DOI
Farina A. R., Tacconelli A., Vacca A., Maroder M., Gulino A., Mackay A. R. (1999). Transcriptional up-regulation of matrix metalloproteinase-9 expression during spontaneous epithelial to neuroblast phenotype conversion by SK-N-SH neuroblastoma cells, involved in enhanced invasivity, depends upon GT-box and nuclear factor kappaB elements. Cell Growth Differ. 10 353–367. PubMed
Green D. R., Evan G. I. (2002). A matter of life and death. Cancer Cell 1 19–30. 10.1016/s1535-6108(02)0002 PubMed DOI
Hearst S. M., Lopez M. E., Shao Q., Liu Y., Vig P. J. (2010). Dopamine D2 receptor signaling modulates mutant ataxin-1 S776 phosphorylation and aggregation. J. Neurochem. 114 706–716. 10.1111/j.1471-4159.2010.06791.x PubMed DOI PMC
Hearst S. M., Shao Q., Lopez M., Raucher D., Vig P. J. (2014). The design and delivery of a PKA inhibitory polypeptide to treat SCA1. J. Neurochem. 131 101–114. 10.1111/jnc.12782 PubMed DOI
Hearst S. M., Walker L. R., Shao Q., Lopez M., Raucher D., Vig P. J. (2011). The design and delivery of a thermally responsive peptide to inhibit S100B-mediated neurodegeneration. Neuroscience 197 369–380. 10.1016/j.neuroscience.2011.09.025 PubMed DOI PMC
Horstmann S., Budig L., Gardner H., Koziol J., Deuschle M., Schilling C., et al. (2010). Matrix metalloproteinases in peripheral blood and cerebrospinal fluid in patients with Alzheimer’s disease. Int. Psychogeriatr. 22 966–972. 10.1017/S1041610210000827 PubMed DOI
Jackson B. C., Nebert D. W., Vasiliou V. (2010). Update of human and mouse matrix metalloproteinase families. Hum. Genomics 4 194–201. 10.1186/1479-7364-4-3-194 PubMed DOI PMC
Kaplan A., Spiller K. J., Towne C., Kanning K. C., Choe G. T., Geber A., et al. (2014). Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron 81 333–348. 10.1016/j.neuron.2013.12.009 PubMed DOI PMC
Kessenbrock K., Dijkgraaf G. J., Lawson D. A., Littlepage L. E., Shahi P., Pieper U., et al. (2013). A role for matrix metalloproteinases in regulating mammary stem cell function via the Wnt signaling pathway. Cell Stem Cell 13 300–313. 10.1016/j.stem.2013.06.005 PubMed DOI PMC
Kessenbrock K., Wang C. Y., Werb Z. (2015). Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol. 44-46 184–190. 10.1016/j.matbio.2015.01.022 PubMed DOI PMC
Klein G., Schmal O., Aicher W. K. (2015). Matrix metalloproteinases in stem cell mobilization. Matrix Biol. 44-46 175–183. 10.1016/j.matbio.2015.01.011 PubMed DOI
Kosugi S., Hasebe M., Tomita M., Yanagawa H. (2009). Systematic identification of yeast cell cycle-dependent nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. U.S.A. 106 10171–10176. 10.1073/pnas.0900604106 PubMed DOI PMC
Kuo C. T., Jan L. Y., Jan Y. N. (2005). Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. Proc. Natl. Acad. Sci. U.S.A. 102 15230–15235. 10.1073/pnas.0507393102 PubMed DOI PMC
Kwan J. A., Schulze C. J., Wang W., Leon H., Sariahmetoglu M., Sung M., et al. (2004). Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J. 18 690–692. 10.1096/fj.02-1202fje PubMed DOI
LaFever K. S., Wang X., Page-McCaw P., Bhave G., Page-McCaw A. (2017). Both Drosophila matrix metalloproteinases have released and membrane-tethered forms but have different substrates. Sci. Rep. 7:44560. 10.1038/srep44560 PubMed DOI PMC
Leppert D., Ford J., Stabler G., Grygar C., Lienert C., Huber S., et al. (1998). Matrix metalloproteinase-9 (gelatinase B) is selectively elevated in CSF during relapses and stable phases of multiple sclerosis. Brain 121(Pt 12), 2327–2334. 10.1093/brain/121.12.2327 PubMed DOI
Lorenzl S., Calingasan N., Yang L., Albers D. S., Shugama S., Gregorio J., et al. (2004). Matrix metalloproteinase-9 is elevated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuromol. Med. 5 119–132. 10.1385/NMM:5:2:119 PubMed DOI
Lukaszewicz-Zajac M., Mroczko B., Slowik A. (2014). Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in amyotrophic lateral sclerosis (ALS). J. Neural Transm. 121 1387–1397. 10.1007/s00702-014-1205-3 PubMed DOI PMC
MacDougall J. R., Kerbel R. S. (1995). Constitutive production of 92-kDa gelatinase B can be suppressed by alterations in cell shape. Exp. Cell Res. 218 508–515. 10.1006/excr.1995.1185 PubMed DOI
Madeira F., Park Y. M., Lee J., Buso N., Gur T., Madhusoodanan N., et al. (2019). The EMBL-EBI search and sequence analysis tools APIs. Nucleic Acids Res. 47 W636–W641. 10.1093/nar/gkz268 PubMed DOI PMC
Mannello F., Luchetti F., Falcieri E., Papa S. (2005). Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis 10 19–24. 10.1007/s10495-005-6058-7 PubMed DOI
Martel-Pelletier J., McCollum R., Fujimoto N., Obata K., Cloutier J. M., Pelletier J. P. (1994). Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis. Lab Inves. 70 807–815. PubMed
Means J. C., Passarelli A. L. (2010). Viral fibroblast growth factor, matrix metalloproteases, and caspases are associated with enhancing systemic infection by baculoviruses. Proc. Natl. Acad. Sci. U.S..A. 107 9825–9830. 10.1073/pnas.0913582107 PubMed DOI PMC
Meriane M., Duhamel S., Lejeune L., Galipeau J., Annabi B. (2006). Cooperation of matrix metalloproteinases with the RhoA/Rho kinase and mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase signaling pathways is required for the sphingosine-1-phosphate-induced mobilization of marrow-derived stromal cells. Stem Cells 24 2557–2565. 10.1634/stemcells.2006-0209 PubMed DOI
Miller J. P., Holcomb J., Al-Ramahi I., de Haro M., Gafni J., Zhang N., et al. (2010). Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington’s disease. Neuron 67 199–212. 10.1016/j.neuron.2010.06.021 PubMed DOI PMC
Moshal K. S., Metreveli N., Frank I., Tyagi S. C. (2008). Mitochondrial MMP activation, dysfunction and arrhythmogenesis in hyperhomocysteinemia. Curr. Vasc. Pharmacol. 6 84–92. 10.2174/157016108783955301 PubMed DOI
Murphy G. (2011). Tissue inhibitors of metalloproteinases. Genome Biol. 12:233. 10.1186/gb-2011-12-11-233 PubMed DOI PMC
Nagase H., Visse R., Murphy G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69 562–573. 10.1016/j.cardiores.2005.12.002 PubMed DOI
Ozawa A., Kadowaki E., Haga Y., Sekiguchi H., Hemmi N., Kaneko T., et al. (2013). Acetylcholine esterase is a regulator of GFAP expression and a target of dichlorvos in astrocytic differentiation of rat glioma C6 cells. Brain Res. 1537 37–45. 10.1016/j.brainres.2013.08.031 PubMed DOI
Page-McCaw A., Serano J., Sante J. M., Rubin G. M. (2003). Drosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev. Cell 4 95–106. 10.1016/S1534-5807(02)00400-8 PubMed DOI
Park C. H., Moon Y., Shin C. M., Chung J. H. (2010). Cyclic AMP suppresses matrix metalloproteinase-1 expression through inhibition of MAPK and GSK-3β. J. Invest. Dermatol. 130 2049–2056. 10.1038/jid.2010.62 PubMed DOI
Radisky E. S., Raeeszadeh-Sarmazdeh M., Radisky D. C. (2017). Therapeutic potential of matrix metalloproteinase inhibition in breast cancer. J. Cell Biochem. 118 3531–3548. 10.1002/jcb.26185 PubMed DOI PMC
Rivera S., Garcia-Gonzalez L., Khrestchatisky M., Baranger K. (2019). Metalloproteinases and their tissue inhibitors in Alzheimer’s disease and other neurodegenerative disorders. Cell. Mol. Life Sci. 76 3167–3191. 10.1007/s00018-019-03178-2 PubMed DOI PMC
Rosenberg G. A. (2009). Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol. 8 205–216. 10.1016/S1474-4422(09)70016-X PubMed DOI
Sanka M. R., Epstein D. L., Rao P. V. (2007). Influence of actin cytoskeletal integrity on matrix metalloproteinase-2 activation in cultured human trabecular meshwork cells. Invest. Ophthalmol. Vis. Sci. 48 2105–2114. 10.1167/iovs.06-1089 PubMed DOI
Sawicki G., Leon H., Sawicka J., Sariahmetoglu M., Schulze C. J., Scott P. G., et al. (2005). Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112 544–552. 10.1161/CIRCULATIONAHA.104.531616 PubMed DOI
Sievers F., Higgins D. G. (2018). Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27 135–145. 10.1002/pro.3290 PubMed DOI PMC
Sinha S. K., Asotra K., Uzui H., Nagwani S., Mishra V., Rajavashisth T. B. (2014). Nuclear localization of catalytically active MMP-2 in endothelial cells and neurons. Am. J. Transl. Res. 6 155–162. PubMed PMC
Si-Tayeb K., Monvoisin A., Mazzocco C., Lepreux S., Decossas M., Cubel G., et al. (2006). Matrix metalloproteinase 3 is present in the cell nucleus and is involved in apoptosis. Am. J. Pathol. 169 1390–1401. 10.2353/ajpath.2006.060005 PubMed DOI PMC
Sung M. M., Schulz C. G., Wang W., Sawicki G., Bautista-Lopez N. L., Schulz R. (2007). Matrix metalloproteinase-2 degrades the cytoskeletal protein alpha-actinin in peroxynitrite mediated myocardial injury. J. Mol. Cell Cardiol. 43 429–436. 10.1016/j.yjmcc.2007.07.055 PubMed DOI
Wang W., Schulze C. J., Suarez-Pinzon W. L., Dyck J. R., Sawicki G., Schulz R. (2002). Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106 1543–1549. 10.1161/01.cir.0000028818.33488.7b PubMed DOI
Yin K. J., Cirrito J. R., Yan P., Hu X., Xiao Q., Pan X., et al. (2006). Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-β peptide catabolism. J. Neurosci. 26 10939–10948. 10.1523/JNEUROSCI.2085-06.2006 PubMed DOI PMC
Zhong Y. Q., Wei J., Fu Y. R., Shao J., Liang Y. W., Lin Y. H., et al. (2008). [Toxicity of cationic liposome Lipofectamine 2000 in human pancreatic cancer Capan-2 cells]. [Article in Chinese]. Nan Fang Yi Ke Da Xue Xue Bao 28 1981–1984. PubMed