Unveiling Five Naked Structures of Tartaric Acid

. 2021 Aug 02 ; 60 (32) : 17410-17414. [epub] 20210701

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34060688

Grantová podpora
CTQ2016-76393-P Ministerio de Ciencia e Innovación
FJC2018-037320-I Ministerio de Ciencia e Innovación
PID2019-111396GB-I00 Ministerio de Ciencia e Innovación

The unbiased, naked structures of tartaric acid, one of the most important organic compounds existing in nature and a candidate to be present in the interstellar medium, has been revealed in this work for the first time. Solid samples of its naturally occurring (R,R) enantiomer have been vaporized by laser ablation, expanded in a supersonic jet, and characterized by Fourier transform microwave spectroscopy. In the isolation conditions of the jet, we have discovered up to five different structures stabilized by intramolecular hydrogen-bond networks dominated by O-H⋅⋅⋅O=C and O-H⋅⋅⋅O motifs extended along the entire molecule. These five forms, two with an extended (trans) disposition of the carbon chain and three with a bent (gauche) disposition, can serve as a basis to represent the shape of tartaric acid. This work also reports the first set of spectroscopy data that can be used to detect tartaric acid in the interstellar medium.

Zobrazit více v PubMed

Pasteur L., Ann. Chim. Phys. 1848, 24, 442–459.

Biot J.-B., Mem. Acad. Sci. Inst. Fr. 1817, 2, 4–136.

Flack H. D., Acta Crystallogr. Sect. A 2009, 65, 371–389. PubMed

Gal J., Helv. Chim. Acta 2013, 96, 1617–1657.

“Tartaric Acid—Chemical Economics Handbook (CEH) | IHS Markit”, can be found under https://ihsmarkit.com/products/tartaric-acid-chemical-economics-handbook.html.

Gawronski J., Gawronska K., Tartaric & Malic Acids in Synthesis: A Source Book of Building Blocks, Ligands, Auxiliaries & Resolving Agents, Wiley, Hoboken, 1999.

Seebach D., Beck A. K., Heckel A., Angew. Chem. Int. Ed. 2001, 40, 92–138; PubMed

Angew. Chem. 2001, 113, 96–142.

Gratzer K., Gururaja G. N., Waser M., Eur. J. Org. Chem. 2013, 4471–4482. PubMed PMC

Cooper G., Kimmich N., Belisle W., Sarinana J., Brabham K., Garrel L., Nature 2001, 414, 879–883. PubMed

Herbst E., van Dishoeck E. F., Annu. Rev. Astron. Astrophys. 2009, 47, 427–480.

McGuire B. A., ApJS 2018, 239, 17.

McGuire B. A., Brandon Carroll P., Loomis R. A., Finneran I. A., Jewell P. R., Remijan A. J., Blake G. A., Science 2016, 352, 1449–1452. PubMed

Ellinger Y., Pauzat F., Markovits A., Allaire A., Guillemin J.-C., Astron. Astrophys. 2020, 633, A49.

Stern F., Beevers C. A., Acta Crystallogr. 1950, 3, 341–346.

Okaya Y., Stemple N. R., Kay M. I., Acta Crystallogr. 1966, 21, 237–243.

Witko E. M., Korter T. M., J. Phys. Chem. A 2011, 115, 10052–10058. PubMed

Polavarapu P. L., Ewig C. S., Chandramouly T., J. Am. Chem. Soc. 1987, 109, 7382–7386.

Gawroński J., Gawrońska K., Skowronek P., Rychlewska U., Warzajtis B., Rychlewski J., Hoffmann M., Szarecka A., Tetrahedron 1997, 53, 6113–6144.

Ascenso J., Gil V. M. S., Can. J. Chem. 1980, 58, 1376–1379.

Barron L. D., Gargaro A. R., Hecht L., Polavarapu P. L., Sugeta H., Spectrochim. Acta Part A 1992, 48, 1051–1066.

Barron L. D., Tetrahedron 1978, 34, 607–610.

Jahn M. K., Méndez E., Rajappan Nair K. P., Godfrey P. D., McNaughton D., Écija P., Basterretxea F. J., Cocinero E. J., Grabow J. U., Phys. Chem. Chem. Phys. 2015, 17, 19726–19734. PubMed

León I., Alonso E. R., Mata S., Cabezas C., Alonso J. L., Angew. Chem. Int. Ed. 2019, 58, 16002–16007; PubMed

Angew. Chem. 2019, 131, 16148–16153.

Peña I., Cabezas C., Alonso J. L., Angew. Chem. Int. Ed. 2015, 54, 2991–2994; PubMed PMC

Angew. Chem. 2015, 127, 3034–3037.

Alonso E. R., Peña I., Cabezas C., Alonso J. L., J. Phys. Chem. Lett. 2016, 7, 845–850. PubMed

León I., Alonso E. R., Cabezas C., Mata S., Alonso J. L., Commun. Chem. 2019, 2, 3.

Pickett H. M., J. Mol. Spectrosc. 1991, 148, 371–377.

Gordy W., Cook R. L., Microwave Molecular Spectra, Wiley, Hoboken, 1984.

Hoffmann M., Szarecka A., Rychlewski J., Adv. Quantum Chem. 1998, 32, 109–125.

Hoffmann M., Rychlewski J., Rychlewska U., Comput. Methods Sci. Technol. 1996, 2, 51–63.

Johnson E. R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., Yang W., J. Am. Chem. Soc. 2010, 132, 6498–6506. PubMed PMC

Contreras-García J., Johnson E. R., Keinan S., Chaudret R., Piquemal J. P., Beratan D. N., Yang W., J. Chem. Theory Comput. 2011, 7, 625–632. PubMed PMC

Boto R. A., Peccati F., Laplaza R., Quan C., Carbone A., Piquemal J. P., Maday Y., Contreras-Garcĺa J., J. Chem. Theory Comput. 2020, 16, 4150–4158. PubMed

Jeffrey G. A., An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, 1997.

López de la Paz M., Ellis G., Pérez M., Perkins J., Jiménez-Barbero J., Vicent C., Eur. J. Org. Chem. 2002, 840–855.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Determining the Molecular Shape of Progesterone: Insights from Laser Ablation Rotational Spectroscopy

. 2025 Mar 06 ; 16 (9) : 2425-2432. [epub] 20250227

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...