Unveiling Five Naked Structures of Tartaric Acid
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CTQ2016-76393-P
Ministerio de Ciencia e Innovación
FJC2018-037320-I
Ministerio de Ciencia e Innovación
PID2019-111396GB-I00
Ministerio de Ciencia e Innovación
PubMed
34060688
PubMed Central
PMC8361959
DOI
10.1002/anie.202105718
Knihovny.cz E-zdroje
- Klíčová slova
- astrochemistry, chiral molecules, laser ablation, rotational spectroscopy, tartaric acid,
- Publikační typ
- časopisecké články MeSH
The unbiased, naked structures of tartaric acid, one of the most important organic compounds existing in nature and a candidate to be present in the interstellar medium, has been revealed in this work for the first time. Solid samples of its naturally occurring (R,R) enantiomer have been vaporized by laser ablation, expanded in a supersonic jet, and characterized by Fourier transform microwave spectroscopy. In the isolation conditions of the jet, we have discovered up to five different structures stabilized by intramolecular hydrogen-bond networks dominated by O-H⋅⋅⋅O=C and O-H⋅⋅⋅O motifs extended along the entire molecule. These five forms, two with an extended (trans) disposition of the carbon chain and three with a bent (gauche) disposition, can serve as a basis to represent the shape of tartaric acid. This work also reports the first set of spectroscopy data that can be used to detect tartaric acid in the interstellar medium.
Zobrazit více v PubMed
Pasteur L., Ann. Chim. Phys. 1848, 24, 442–459.
Biot J.-B., Mem. Acad. Sci. Inst. Fr. 1817, 2, 4–136.
Flack H. D., Acta Crystallogr. Sect. A 2009, 65, 371–389. PubMed
Gal J., Helv. Chim. Acta 2013, 96, 1617–1657.
“Tartaric Acid—Chemical Economics Handbook (CEH) | IHS Markit”, can be found under https://ihsmarkit.com/products/tartaric-acid-chemical-economics-handbook.html.
Gawronski J., Gawronska K., Tartaric & Malic Acids in Synthesis: A Source Book of Building Blocks, Ligands, Auxiliaries & Resolving Agents, Wiley, Hoboken, 1999.
Seebach D., Beck A. K., Heckel A., Angew. Chem. Int. Ed. 2001, 40, 92–138; PubMed
Angew. Chem. 2001, 113, 96–142.
Gratzer K., Gururaja G. N., Waser M., Eur. J. Org. Chem. 2013, 4471–4482. PubMed PMC
Cooper G., Kimmich N., Belisle W., Sarinana J., Brabham K., Garrel L., Nature 2001, 414, 879–883. PubMed
Herbst E., van Dishoeck E. F., Annu. Rev. Astron. Astrophys. 2009, 47, 427–480.
McGuire B. A., ApJS 2018, 239, 17.
McGuire B. A., Brandon Carroll P., Loomis R. A., Finneran I. A., Jewell P. R., Remijan A. J., Blake G. A., Science 2016, 352, 1449–1452. PubMed
Ellinger Y., Pauzat F., Markovits A., Allaire A., Guillemin J.-C., Astron. Astrophys. 2020, 633, A49.
Stern F., Beevers C. A., Acta Crystallogr. 1950, 3, 341–346.
Okaya Y., Stemple N. R., Kay M. I., Acta Crystallogr. 1966, 21, 237–243.
Witko E. M., Korter T. M., J. Phys. Chem. A 2011, 115, 10052–10058. PubMed
Polavarapu P. L., Ewig C. S., Chandramouly T., J. Am. Chem. Soc. 1987, 109, 7382–7386.
Gawroński J., Gawrońska K., Skowronek P., Rychlewska U., Warzajtis B., Rychlewski J., Hoffmann M., Szarecka A., Tetrahedron 1997, 53, 6113–6144.
Ascenso J., Gil V. M. S., Can. J. Chem. 1980, 58, 1376–1379.
Barron L. D., Gargaro A. R., Hecht L., Polavarapu P. L., Sugeta H., Spectrochim. Acta Part A 1992, 48, 1051–1066.
Barron L. D., Tetrahedron 1978, 34, 607–610.
Jahn M. K., Méndez E., Rajappan Nair K. P., Godfrey P. D., McNaughton D., Écija P., Basterretxea F. J., Cocinero E. J., Grabow J. U., Phys. Chem. Chem. Phys. 2015, 17, 19726–19734. PubMed
León I., Alonso E. R., Mata S., Cabezas C., Alonso J. L., Angew. Chem. Int. Ed. 2019, 58, 16002–16007; PubMed
Angew. Chem. 2019, 131, 16148–16153.
Peña I., Cabezas C., Alonso J. L., Angew. Chem. Int. Ed. 2015, 54, 2991–2994; PubMed PMC
Angew. Chem. 2015, 127, 3034–3037.
Alonso E. R., Peña I., Cabezas C., Alonso J. L., J. Phys. Chem. Lett. 2016, 7, 845–850. PubMed
León I., Alonso E. R., Cabezas C., Mata S., Alonso J. L., Commun. Chem. 2019, 2, 3.
Pickett H. M., J. Mol. Spectrosc. 1991, 148, 371–377.
Gordy W., Cook R. L., Microwave Molecular Spectra, Wiley, Hoboken, 1984.
Hoffmann M., Szarecka A., Rychlewski J., Adv. Quantum Chem. 1998, 32, 109–125.
Hoffmann M., Rychlewski J., Rychlewska U., Comput. Methods Sci. Technol. 1996, 2, 51–63.
Johnson E. R., Keinan S., Mori-Sánchez P., Contreras-García J., Cohen A. J., Yang W., J. Am. Chem. Soc. 2010, 132, 6498–6506. PubMed PMC
Contreras-García J., Johnson E. R., Keinan S., Chaudret R., Piquemal J. P., Beratan D. N., Yang W., J. Chem. Theory Comput. 2011, 7, 625–632. PubMed PMC
Boto R. A., Peccati F., Laplaza R., Quan C., Carbone A., Piquemal J. P., Maday Y., Contreras-Garcĺa J., J. Chem. Theory Comput. 2020, 16, 4150–4158. PubMed
Jeffrey G. A., An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, 1997.
López de la Paz M., Ellis G., Pérez M., Perkins J., Jiménez-Barbero J., Vicent C., Eur. J. Org. Chem. 2002, 840–855.