Nucleoporin TPR Affects C2C12 Myogenic Differentiation via Regulation of Myh4 Expression
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
15-08835Y
Grantová Agentura České Republiky
19-05608S
Grantová Agentura České Republiky
18-19714S
Grantová Agentura České Republiky
68378050
Ústav molekulární genetiky AV ČR, v. v. i.
LTC19048
European Cooperation in Science and Technology
LTC20024
European Cooperation in Science and Technology
CZ.02.1.01/0.0/0.0/16_01/0001775
European Regional Development Fund
CZ.1.05/1.1.00/02.0109
European Regional Development Fund
LM2018129 Czech-BioImaging
Ministerstvo Školství, Mládeže a Tělovýchovy
No.1370119
Grantová Agentura, Univerzita Karlova
No.930218
Grantová Agentura, Univerzita Karlova
PubMed
34063931
PubMed Central
PMC8224082
DOI
10.3390/cells10061271
PII: cells10061271
Knihovny.cz E-zdroje
- Klíčová slova
- LSD1, Myh4, Olfr, TPR, gene expression, myogenic differentiation, nucleoporin, translocated promoter region,
- MeSH
- buněčná diferenciace MeSH
- buněčné linie MeSH
- exprese genu MeSH
- komplex proteinů jaderného póru metabolismus MeSH
- kosterní svalová vlákna * cytologie metabolismus MeSH
- myoblasty kosterní * cytologie metabolismus MeSH
- myši MeSH
- protoonkogenní proteiny metabolismus MeSH
- regulace genové exprese MeSH
- těžké řetězce myosinu metabolismus MeSH
- vývoj svalů MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- komplex proteinů jaderného póru MeSH
- MYH4 protein, mouse MeSH Prohlížeč
- protoonkogenní proteiny MeSH
- těžké řetězce myosinu MeSH
- TPR protein, mouse MeSH Prohlížeč
The nuclear pore complex (NPC) has emerged as a hub for the transcriptional regulation of a subset of genes, and this type of regulation plays an important role during differentiation. Nucleoporin TPR forms the nuclear basket of the NPC and is crucial for the enrichment of open chromatin around NPCs. TPR has been implicated in the regulation of transcription; however, the role of TPR in gene expression and cell differentiation has not been described. Here we show that depletion of TPR results in an aberrant morphology of murine proliferating C2C12 myoblasts (MBs) and differentiated C2C12 myotubes (MTs). The ChIP-Seq data revealed that TPR binds to genes linked to muscle formation and function, such as myosin heavy chain (Myh4), myocyte enhancer factor 2C (Mef2C) and a majority of olfactory receptor (Olfr) genes. We further show that TPR, possibly via lysine-specific demethylase 1 (LSD1), promotes the expression of Myh4 and Olfr376, but not Mef2C. This provides a novel insight into the mechanism of myogenesis; however, more evidence is needed to fully elucidate the mechanism by which TPR affects specific myogenic genes.
1st Faculty of Medicine Department of Cell Biology Charles University 121 08 Prague Czech Republic
Faculty of Science Department of Cell Biology Charles University 128 00 Prague Czech Republic
Microscopy Center LM and EM Institute of Molecular Genetics of the CAS 142 20 Prague Czech Republic
Zobrazit více v PubMed
Kuhn T.M., Pascual-Garcia P., Gozalo A., Little S.C., Capelson M. Chromatin targeting of nuclear pore proteins induces chromatin decondensation. J. Cell Biol. 2019;218:2945–2961. doi: 10.1083/jcb.201807139. PubMed DOI PMC
Pascual-Garcia P., Debo B., Aleman J.R., Talamas J.A., Lan Y., Nguyen N.H., Won K.J., Capelson M. Metazoan Nuclear Pores Provide a Scaffold for Poised Genes and Mediate Induced Enhancer-Promoter Contacts. Mol. Cell. 2017;66:63–76. doi: 10.1016/j.molcel.2017.02.020. PubMed DOI PMC
Raices M., Bukata L., Sakuma S., Borlido J., Hernandez L.S., Hart D.O., D’Angelo M.A. Nuclear Pores Regulate Muscle Development and Maintenance by Assembling a Localized Mef2C Complex. Dev. Cell. 2017;41:540–554.e7. doi: 10.1016/j.devcel.2017.05.007. PubMed DOI PMC
Su Y., Pelz C., Huang T., Torkenczy K., Wang X., Cherry A., Daniel C.J., Liang J., Nan X., Dai M.-S., et al. Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes Dev. 2018;32:1398–1419. doi: 10.1101/gad.314377.118. PubMed DOI PMC
Ibarra A., Benner C., Tyagi S., Cool J., Hetzer M.W. Nucleoporin-mediated regulation of cell identity genes. Genes Dev. 2016;30:2253–2258. doi: 10.1101/gad.287417.116. PubMed DOI PMC
Krull S., Dörries J., Boysen B., Reidenbach S., Magnius L., Norder H., Thyberg J., Cordes V.C. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 2010;29:1659–1673. doi: 10.1038/emboj.2010.54. PubMed DOI PMC
Buchwalter A.L., Liang Y., Hetzer M.W. Nup50 is required for cell differentiation and exhibits transcription-dependent dynamics. Mol. Biol. Cell. 2014;25:2472–2484. doi: 10.1091/mbc.e14-04-0865. PubMed DOI PMC
Kalverda B., Pickersgill H., Shloma V.V., Fornerod M. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell. 2010;140:360–371. doi: 10.1016/j.cell.2010.01.011. PubMed DOI
Capelson M., Liang Y., Schulte R., Mair W., Wagner U., Hetzer M.W. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell. 2010;140:372. doi: 10.1016/j.cell.2009.12.054. PubMed DOI PMC
Frosst P., Guan T., Subauste C., Hahn K., Gerace L. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J. Cell Biol. 2002;156:617–630. doi: 10.1083/jcb.200106046. PubMed DOI PMC
Krull S., Thyberg J., Björkroth B., Rackwitz H.-R., Cordes V.C. Nucleoporins as Components of the Nuclear Pore Complex Core Structure and Tpr as the Architectural Element of the Nuclear Basket. Mol. Biol. Cell. 2004;15:4261–4277. doi: 10.1091/mbc.e04-03-0165. PubMed DOI PMC
Aksenova V., Lee H.N., Smith A., Chen S., Bhat P., Iben J., Echeverria C., Fontoura B., Arnaoutov A., Dasso M. Distinct Basket Nucleoporins roles in Nuclear Pore Function and Gene Expression: Tpr is an integral component of the TREX-2 mRNA export pathway. bioRxiv. 2019:685263. doi: 10.1101/685263. DOI
Lee E.S., Wolf E.J., Ihn S.S.J., Smith H.W., Emili A., Palazzo A.F. TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Res. 2020;48:11645–11663. doi: 10.1093/nar/gkaa919. PubMed DOI PMC
Vomastek T., Iwanicki M.P., Burack W.R., Tiwari D., Kumar D., Parsons J.T., Weber M.J., Nandicoori V.K. Extracellular Signal-Regulated Kinase 2 (ERK2) Phosphorylation Sites and Docking Domain on the Nuclear Pore Complex Protein Tpr Cooperatively Regulate ERK2-Tpr Interaction. Mol. Cell. Biol. 2008;28:6954–6966. doi: 10.1128/MCB.00925-08. PubMed DOI PMC
Fontoura B.M., Dales S., Blobel G., Zhong H. The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR. Proc. Natl. Acad. Sci. USA. 2001;98:3208–3213. doi: 10.1073/pnas.061014698. PubMed DOI PMC
Agarwal S., Yadav S.K., Dixit A. Heterologous expression of Translocated promoter region protein, Tpr, identified as a transcription factor from Rattus norvegicus. Protein Expr. Purif. 2011;77:112–117. doi: 10.1016/j.pep.2011.01.001. PubMed DOI
Jin W., Liu M., Peng J., Jiang S. Function analysis of Mef2c promoter in muscle differentiation. Biotechnol. Appl. Biochem. 2017;64:647–656. doi: 10.1002/bab.1524. PubMed DOI
Stuart C.A., Stone W.L., Howell M.E.A., Brannon M.F., Hall H.K., Gibson A.L., Stone M.H. Myosin content of individual human muscle fibers isolated by laser capture microdissection. Am. J. Physiol. Cell Physiol. 2016;310:C381–C389. doi: 10.1152/ajpcell.00317.2015. PubMed DOI PMC
Shi Y., Lan F., Matson C., Mulligan P., Whetstine J.R., Cole P.A., Casero R.A., Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004;119:941–953. doi: 10.1016/j.cell.2004.12.012. PubMed DOI
Wang J., Telese F., Tan Y., Li W., Jin C., He X., Basnet H., Ma Q., Merkurjev D., Zhu X., et al. LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat. Neurosci. 2015;18:1256–1264. doi: 10.1038/nn.4069. PubMed DOI PMC
Metzger E., Wissmann M., Yin N., Müller J.M., Schneider R., Peters A.H.F.M., Günther T., Buettner R., Schüle R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 2005;437:436–439. doi: 10.1038/nature04020. PubMed DOI
Majello B., Gorini F., Saccà C.D., Amente S. Expanding the Role of the Histone Lysine-Specific Demethylase LSD1 in Cancer. Cancers. 2019;11:324. doi: 10.3390/cancers11030324. PubMed DOI PMC
Choi J., Jang H., Kim H., Kim S.-T., Cho E.-J., Youn H.-D. Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors. Biochem. Biophys. Res. Commun. 2010;401:327–332. doi: 10.1016/j.bbrc.2010.09.014. PubMed DOI
Choi J., Jang H., Kim H., Lee J.-H., Kim S.-T., Cho E.-J., Youn H.-D. Modulation of lysine methylation in myocyte enhancer factor 2 during skeletal muscle cell differentiation. Nucleic Acids Res. 2014;42:224–234. doi: 10.1093/nar/gkt873. PubMed DOI PMC
Scionti I., Hayashi S., Mouradian S., Girard E., Esteves de Lima J., Morel V., Simonet T., Wurmser M., Maire P., Ancelin K., et al. LSD1 Controls Timely MyoD Expression via MyoD Core Enhancer Transcription. Cell Rep. 2017;18:1996–2006. doi: 10.1016/j.celrep.2017.01.078. PubMed DOI
Munehira Y., Yang Z., Gozani O. Systematic Analysis of Known and Candidate Lysine Demethylases in the Regulation of Myoblast Differentiation. J. Mol. Biol. 2017;429:2055–2065. doi: 10.1016/j.jmb.2016.10.004. PubMed DOI PMC
Anan K., Hino S., Shimizu N., Sakamoto A., Nagaoka K., Takase R., Kohrogi K., Araki H., Hino Y., Usuki S., et al. LSD1 mediates metabolic reprogramming by glucocorticoids during myogenic differentiation. Nucleic Acids Res. 2018;46:5441–5454. doi: 10.1093/nar/gky234. PubMed DOI PMC
Tosic M., Allen A., Willmann D., Lepper C., Kim J., Duteil D., Schüle R. Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells. Nat. Commun. 2018;9:366. doi: 10.1038/s41467-017-02740-5. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. [(accessed on 15 February 2017)];2010 Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
García-Alcalde F., Okonechnikov K., Carbonell J., Cruz L.M., Götz S., Tarazona S., Dopazo J., Meyer T.F., Conesa A. Qualimap: Evaluating next-generation sequencing alignment data. Bioinformatics. 2012;28:2678–2679. doi: 10.1093/bioinformatics/bts503. PubMed DOI
Zhang Y., Liu T., Meyer C.A., Eeckhoute J., Johnson D.S., Bernstein B.E., Nusbaum C., Myers R.M., Brown M., Li W., et al. Model-based analysis of ChIP-Seq (MACS) Genome Biol. 2008;9:R137. doi: 10.1186/gb-2008-9-9-r137. PubMed DOI PMC
Love M.I., Anders S., Kim V., Huber W. RNA-Seq workflow: Gene-level exploratory analysis and differential expression. F1000Research. 2015;4:1070. doi: 10.12688/f1000research.7035.1. PubMed DOI PMC
Anders S., Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106. doi: 10.1186/gb-2010-11-10-r106. PubMed DOI PMC
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus computational platform for comprehensive analysis of proteomics data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI
Cox J., Mann M. 1D and 2D annotation enrichment: A statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinform. 2012;13(Suppl. 16):S12. doi: 10.1186/1471-2105-13-S16-S12. PubMed DOI PMC
Kanehisa M., Sato Y., Furumichi M., Morishima K., Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47:D590–D595. doi: 10.1093/nar/gky962. PubMed DOI PMC
Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Gough J., Karplus K., Hughey R., Chothia C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J. Mol. Biol. 2001;313:903–919. doi: 10.1006/jmbi.2001.5080. PubMed DOI
Jacinto F.V., Benner C., Hetzer M.W. The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes Dev. 2015;29:1224–1238. doi: 10.1101/gad.260919.115. PubMed DOI PMC
Fišerová J., Maninová M., Sieger T., Uhlířová J., Šebestová L., Efenberková M., Čapek M., Fišer K., Hozák P. Nuclear pore protein TPR associates with lamin B1 and affects nuclear lamina organization and nuclear pore distribution. Cell. Mol. Life Sci. 2019 doi: 10.1007/s00018-019-03037-0. PubMed DOI PMC
Chal J., Pourquié O. Making muscle: Skeletal myogenesis in vivo and in vitro. Development. 2017;144:2104–2122. doi: 10.1242/dev.151035. PubMed DOI
Chen B., You W., Wang Y., Shan T. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration. Cell. Mol. Life Sci. 2020;77:1551–1569. doi: 10.1007/s00018-019-03341-9. PubMed DOI PMC
Zhang P., Wong C., Liu D., Finegold M. Harper JW and Elledge SJ: p21(CIP1) and p57(KIP2) control muscle differentiation at the myogenin step. Genes Dev. 1999;13:213–224. doi: 10.1101/gad.13.2.213. PubMed DOI PMC
Asp P., Blum R., Vethantham V., Parisi F., Micsinai M., Cheng J., Bowman C., Kluger Y., Dynlacht B.D. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl. Acad. Sci. USA. 2011;108:E149–E158. doi: 10.1073/pnas.1102223108. PubMed DOI PMC
Wu F., Yao J. Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genom. 2013;14:591. doi: 10.1186/1471-2164-14-591. PubMed DOI PMC
Aisenberg W.H., Huang J., Zhu W., Rajkumar P., Cruz R., Santhanam L., Natarajan N., Yong H.M., De Santiago B., Oh J.J., et al. Defining an olfactory receptor function in airway smooth muscle cells. Sci. Rep. 2016;6:38231. doi: 10.1038/srep38231. PubMed DOI PMC
Pavlath G.K. A new function for odorant receptors. Cell Adhes. Migr. 2010;4:502–506. doi: 10.4161/cam.4.4.12291. PubMed DOI PMC
David-Watine B. Silencing Nuclear Pore Protein Tpr Elicits a Senescent-Like Phenotype in Cancer Cells. PLoS ONE. 2011;6:e22423. doi: 10.1371/journal.pone.0022423. PubMed DOI PMC
Funasaka T., Tsuka E., Wong R.W. Regulation of autophagy by nucleoporin Tpr. Sci. Rep. 2012;2:878. doi: 10.1038/srep00878. PubMed DOI PMC
Liang Y., Franks T.M., Marchetto M.C., Gage F.H., Hetzer M.W. Dynamic association of NUP98 with the human genome. PLoS Genet. 2013;9:e1003308. doi: 10.1371/journal.pgen.1003308. PubMed DOI PMC
Mattout A., Cabianca D.S., Gasser S.M. Chromatin states and nuclear organization in development—A view from the nuclear lamina. Genome Biol. 2015;16:1–15. doi: 10.1186/s13059-015-0747-5. PubMed DOI PMC
Acakpo-Satchivi L.J.R., Edelmann W., Sartorius C., Lu B.D., Wahr P.A., Watkins S.C., Metzger J.M., Leinwand L., Kucherlapati R. Growth and Muscle Defects in Mice Lacking Adult Myosin Heavy Chain Genes. J. Cell Biol. 1997;139:1219–1229. doi: 10.1083/jcb.139.5.1219. PubMed DOI PMC
Dalesio N.M., Barreto Ortiz S.F., Pluznick J.L., Berkowitz D.E. Olfactory, Taste, and Photo Sensory Receptors in Non-sensory Organs: It Just Makes Sense. Front. Physiol. 2018;9:1673. doi: 10.3389/fphys.2018.01673. PubMed DOI PMC
Zhang H., Wen J., Bigot A., Chen J., Shang R., Mouly V., Bi P. Human myotube formation is determined by MyoD–Myomixer/Myomaker axis. Sci. Adv. 2020;6:eabc4062. doi: 10.1126/sciadv.abc4062. PubMed DOI PMC
Ganassi M., Badodi S., Ortuste Quiroga H.P., Zammit P.S., Hinits Y., Hughes S.M. Myogenin promotes myocyte fusion to balance fibre number and size. Nat. Commun. 2018;9:4232. doi: 10.1038/s41467-018-06583-6. PubMed DOI PMC
Milano-Foster J., Ray S., Home P., Ganguly A., Bhattacharya B., Bajpai S., Pal A., Mason C.W., Paul S. Regulation of human trophoblast syncytialization by histone demethylase LSD1. J. Biol. Chem. 2019;294:17301–17313. doi: 10.1074/jbc.RA119.010518. PubMed DOI PMC