In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-08959S
Czech Science Foundation (GACR)
CZ.02.1.01/0.0/0.0/16_026/0008382
European Regional Development Fund (OP RDE)
PubMed
34064622
PubMed Central
PMC8151883
DOI
10.3390/nano11051256
PII: nano11051256
Knihovny.cz E-zdroje
- Klíčová slova
- CuSCN, carbon, hole-transport material, in situ Raman spectroelectrochemistry,
- Publikační typ
- časopisecké články MeSH
Systematic in situ Raman microdroplet spectroelectrochemical (Raman-μSEC) characterization of copper (I) thiocyanate (CuSCN) prepared using electrodeposition from aqueous solution on various substrates (carbon-based, F-doped SnO2) is presented. CuSCN is a promising solid p-type inorganic semiconductor used in perovskite solar cells as a hole-transporting material. SEM characterization reveals that the CuSCN layers are homogenous with a thickness of ca. 550 nm. Raman spectra of dry CuSCN layers show that the SCN- ion is predominantly bonded in the thiocyanate resonant form to copper through its S-end (Cu-S-C≡N). The double-layer capacitance of the CuSCN layers ranges from 0.3 mF/cm2 on the boron-doped diamond to 0.8 mF/cm2 on a glass-like carbon. In situ Raman-μSEC shows that, independently of the substrate type, all Raman vibrations from CuSCN and the substrate completely vanish in the potential range from 0 to -0.3 V vs. Ag/AgCl, caused by the formation of a passivation layer. At positive potentials (+0.5 V vs. Ag/AgCl), the bands corresponding to the CuSCN vibrations change their intensities compared to those in the as-prepared, dry layers. The changes concern mainly the Cu-SCN form, showing the dependence of the related vibrations on the substrate type and thus on the local environment modifying the delocalization on the Cu-S bond.
Zobrazit více v PubMed
Bach U., Lupo D., Comte P., Moser J.E., Weissörtel F., Salbeck J., Spreitzer H., Gratzel M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nat. Cell Biol. 1998;395:583–585. doi: 10.1038/26936. DOI
Kavan L. Electrochemistry and dye-sensitized solar cells. Curr. Opin. Electrochem. 2017;2:88–96. doi: 10.1016/j.coelec.2017.03.008. DOI
Zhang J., Freitag M., Hagfeldt A., Boschloo G. Solid-State Dye-Sensitized Solar Cells. Springer Science and Business Media LLC; Berlin/Heidelberg, Germany: 2017. pp. 151–185.
Kavan L. Electrochemistry and perovskite photovoltaics. Curr. Opin. Electrochem. 2018;11:122–129. doi: 10.1016/j.coelec.2018.10.003. DOI
Jena A.K., Kulkarni A., Miyasaka T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019;119:3036–3103. doi: 10.1021/acs.chemrev.8b00539. PubMed DOI
Hagen J., Schaffrath W., Otschik P., Fink R., Bacher A., Schmidt H.-W., Haarer D. Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synth. Met. 1997;89:215–220. doi: 10.1016/S0379-6779(97)81221-0. DOI
Sallenave X., Shasti M., Anaraki E.H., Volyniuk D., Grazulevicius J.V., Zakeeruddin S.M., Mortezaali A., Grätzel M., Hagfeldt A., Sini G. Interfacial and bulk properties of hole transporting materials in perovskite solar cells: Spiro-MeTAD versus spiro-OMeTAD. J. Mater. Chem. A. 2020;8:8527–8539. doi: 10.1039/D0TA00623H. DOI
O’Regan B., Schwartz D.T. Efficient Photo-Hole Injection from Adsorbed Cyanine Dyes into Electrodeposited Copper(I) Thiocyanate Thin Films. Chem. Mater. 1995;7:1349–1354. doi: 10.1021/cm00055a012. DOI
O’Regan B., Schwartz D.T. Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL‘NCS/CuSCN: Initiation and Potential Mechanisms. Chem. Mater. 1998;10:1501–1509. doi: 10.1021/cm9705855. DOI
Perera V.P.S., Pitigala P.K.D.D.P., Jayaweera P.V.V., Bandaranayake K.M.P., Tennakone K. Dye-Sensitized Solid-State Photovoltaic Cells Based on Dye Multilayer−Semiconductor Nanostructures. J. Phys. Chem. B. 2003;107:13758–13761. doi: 10.1021/jp0348979. DOI
Perera V., Senevirathna M., Pitigala P., Tennakone K. Doping CuSCN films for enhancement of conductivity: Application in dye-sensitized solid-state solar cells. Sol. Energy Mater. Sol. Cells. 2005;86:443–450. doi: 10.1016/j.solmat.2004.11.003. DOI
Sun L., Ichinose K., Sekiya T., Sugiura T., Yoshida T. Cathodic electrodeposition of p-CuSCN nanorod and its dye-sensitized photocathodic property. Phys. Procedia. 2011;14:12–24. doi: 10.1016/j.phpro.2011.05.005. DOI
Odobel F., Pellegrin Y., Gibson E.A., Hagfeldt A., Smeigh A.L., Hammarström L. Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Co-Ord. Chem. Rev. 2012;256:2414–2423. doi: 10.1016/j.ccr.2012.04.017. DOI
Premalal E., Dematage N., Kumara G., Rajapakse R., Shimomura M., Murakami K., Konno A. Preparation of structurally modified, conductivity enhanced-p-CuSCN and its application in dye-sensitized solid-state solar cells. J. Power Sources. 2012;203:288–296. doi: 10.1016/j.jpowsour.2011.12.034. DOI
Iwamoto T., Ogawa Y., Sun L., White M.S., Glowacki E.D., Scharber M.C., Sariciftci N.S., Manseki K., Sugiura T., Yoshida T. Electrochemical Self-Assembly of Nanostructured CuSCN/Rhodamine B Hybrid Thin Film and Its Dye-Sensitized Photocathodic Properties. J. Phys. Chem. C. 2014;118:16581–16590. doi: 10.1021/jp412463v. PubMed DOI PMC
Wijeyasinghe N., Regoutz A., Eisner F., Du T., Tsetseris L., Lin Y.-H., Faber H., Pattanasattayavong P., Li J., Yan F., et al. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. Adv. Funct. Mater. 2017;27:1701818. doi: 10.1002/adfm.201701818. DOI
Matebese F., Taziwa R., Mutukwa D. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials. 2018;11:2592. doi: 10.3390/ma11122592. PubMed DOI PMC
Yang I.S., Lee S., Choi J., Jung M.T., Kim J., Lee W.I. Enhancement of open circuit voltage for CuSCN-based perovskite solar cells by controlling the perovskite/CuSCN interface with functional molecules. J. Mater. Chem. A. 2019;7:6028–6037. doi: 10.1039/C8TA12217B. DOI
Kavan L., Zivcova Z.V., Hubik P., Arora N., Dar M.I., Zakeeruddin S.M., Grätzel M. Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics. ACS Appl. Energy Mater. 2019;2:4264–4273. doi: 10.1021/acsaem.9b00496. DOI
Wijeyasinghe N., Eisner F., Tsetseris L., Lin Y.-H., Seitkhan A., Li J., Yan F., Solomeshch O., Tessler N., Patsalas P., et al. p-Doping of Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers for High-Performance Transistors and Organic Solar Cells. Adv. Funct. Mater. 2018;28:1802055. doi: 10.1002/adfm.201802055. DOI
Patel M.J., Gupta S.K., Gajjar P. Electronic structure and optical properties of β-CuSCN: A DFT study. Mater. Today Proc. 2020;28:164–167. doi: 10.1016/j.matpr.2020.01.469. DOI
Pattanasattayavong P., Packwood D.M., Harding D.J. Structural versatility and electronic structures of copper(i) thiocyanate (CuSCN)–ligand complexes. J. Mater. Chem. C. 2019;7:12907–12917. doi: 10.1039/C9TC03198G. DOI
Ni Y., Jin Z., Fu Y. Electrodeposition of p-Type CuSCN Thin Films by a New Aqueous Electrolyte With Triethanolamine Chelation. J. Am. Ceram. Soc. 2007;90:2966–2973. doi: 10.1111/j.1551-2916.2007.01832.x. DOI
Arora N., Dar M.I., Hinderhofer A., Pellet N., Schreiber F., Zakeeruddin S.M., Grätzel M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% Science. 2017;358:768–771. doi: 10.1126/science.aam5655. PubMed DOI
Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry. 5th ed. Wiley Interscience; New York, NY, USA: 1997. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; pp. 1–273.
Aldakov D., Chappaz-Gillot C., Salazar R., Delaye V., Welsby K.A., Ivanova V., Dunstan P.R. Properties of Electrodeposited CuSCN 2D Layers and Nanowires Influenced by Their Mixed Domain Structure. J. Phys. Chem. C. 2014;118:16095–16103. doi: 10.1021/jp412499f. DOI
Yoshida T., Zhang J., Komatsu D., Sawatani S., Minoura H., Pauporté T., Lincot D., Oekermann T., Schlettwein D., Tada H., et al. Electrodeposition of Inorganic/Organic Hybrid Thin Films. Adv. Funct. Mater. 2008;19:17–43. doi: 10.1002/adfm.200700188. DOI
Zhang Q., Guo H., Feng Z., Lin L., Zhou J., Lin Z. n-ZnO nanorods/p-CuSCN heterojunction light-emitting diodes fabricated by electrochemical method. Electrochim. Acta. 2010;55:4889–4894. doi: 10.1016/j.electacta.2010.03.082. DOI
Chappaz-Gillot C., Salazar R., Berson S., Ivanova V. Room temperature template-free electrodeposition of CuSCN nanowires. Electrochem. Commun. 2012;24:1–4. doi: 10.1016/j.elecom.2012.07.030. DOI
Sanchez S., Chappaz-Gillot C., Salazar R., Muguerra H., Arbaoui E., Berson S., Lévy-Clément C., Ivanova V. Comparative study of ZnO and CuSCN semiconducting nanowire electrodeposition on different substrates. J. Solid State Electrochem. 2012;17:391–398. doi: 10.1007/s10008-012-1912-3. DOI
Sun L., Huang Y., Hossain A., Li K., Adams S., Wang Q. Fabrication of TiO2/CuSCN Bulk Heterojunctions by Profile-Controlled Electrodeposition. J. Electrochem. Soc. 2012;159:D323–D327. doi: 10.1149/2.028206jes. DOI
Chappaz-Gillot C., Salazar R., Berson S., Ivanova V. Insights into CuSCN nanowire electrodeposition on flexible substrates. Electrochim. Acta. 2013;110:375–381. doi: 10.1016/j.electacta.2013.03.124. DOI
Ramírez D., Álvarez K., Riveros G., González B., Dalchiele E.A. Electrodeposition of CuSCN seed layers and nanowires: A microelectrogravimetric approach. Electrochim. Acta. 2017;228:308–318. doi: 10.1016/j.electacta.2017.01.053. DOI
Shlenskaya N.N., Tutantsev A.S., Belich N.A., Goodilin E.A., Grätzel M., Tarasov A.B. Electrodeposition of porous CuSCN layers as hole-conducting material for perovskite solar cells. Mendeleev Commun. 2018;28:378–380. doi: 10.1016/j.mencom.2018.07.012. DOI
Chavhan S., Miguel O., Grande H.-J., Gonzalez-Pedro V., Sánchez R.S., Barea E.M., Mora-Seró I., Tena-Zaera R. Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. J. Mater. Chem. A. 2014;2:12754–12760. doi: 10.1039/C4TA01310G. DOI
Yang I.S., Sohn M.R., Sung S.D., Kim Y.J., Yoo Y.J., Kim J., Lee W.I. Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy. 2017;32:414–421. doi: 10.1016/j.nanoen.2016.12.059. DOI
Kavan L., Dunsch L. Spectroelectrochemistry of Carbon Nanostructures. ChemPhysChem. 2007;8:974–998. doi: 10.1002/cphc.200700081. PubMed DOI
Velický M., Bradley D.F., Cooper A.J., Hill E.W., Kinloch I.A., Mishchenko A., Novoselov K.S., Patten H.V., Toth P.S., Valota A.T., et al. Electron Transfer Kinetics on Mono- and Multilayer Graphene. ACS Nano. 2014;8:10089–10100. doi: 10.1021/nn504298r. PubMed DOI
Velický M., Bissett M.A., Woods C.R., Toth P.S., Georgiou T., Kinloch I.A., Novoselov K.S., Dryfe R.A.W. Photoelectrochemistry of Pristine Mono- and Few-Layer MoS2. Nano Lett. 2016;16:2023–2032. doi: 10.1021/acs.nanolett.5b05317. PubMed DOI
Velický M., Toth P.S., Woods C.R., Novoselov K.S., Dryfe R.A.W. Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited. J. Phys. Chem. C. 2019;123:11677–11685. doi: 10.1021/acs.jpcc.9b01010. DOI
Wang Y., Alsmeyer D.C., McCreery R.L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1990;2:557–563. doi: 10.1021/cm00011a018. DOI
Swain G.M., Ramesham R. The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes. Anal. Chem. 1993;65:345–351. doi: 10.1021/ac00052a007. DOI
Pleskov Y., Mishuk V., Abaturov M., Elkin V., Krotova M., Varnin V., Teremetskaya I. Synthetic semiconductor diamond electrodes: Determination of acceptor concentration by linear and non-linear impedance measurements. J. Electroanal. Chem. 1995;396:227–232. doi: 10.1016/0022-0728(95)04018-J. DOI
McCreery R.L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008;108:2646–2687. doi: 10.1021/cr068076m. PubMed DOI
Zivcova Z.V., Frank O., Petrák V., Tarábková H., Vacik J., Nesládek M., Kavan L. Electrochemistry and in situ Raman spectroelectrochemistry of low and high quality boron doped diamond layers in aqueous electrolyte solution. Electrochim. Acta. 2013;87:518–525. doi: 10.1016/j.electacta.2012.09.031. DOI
MacPherson J.V. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 2015;17:2935–2949. doi: 10.1039/C4CP04022H. PubMed DOI
Kavan L., Zivcova Z.V., Petrak V., Frank O., Janda P., Tarabkova H., Nesladek M., Mortet V. Boron-doped Diamond Electrodes: Electrochemical, Atomic Force Microscopy and Raman Study towards Corrosion-modifications at Nanoscale. Electrochim. Acta. 2015;179:626–636. doi: 10.1016/j.electacta.2015.04.124. DOI
Živcová Z.V., Frank O., Drijkoningen S., Haenen K., Mortet V., Kavan L. n-Type phosphorus-doped nanocrystalline diamond: Electrochemical and in situ Raman spectroelectrochemical study. Rsc Adv. 2016;6:51387–51393. doi: 10.1039/C6RA05217G. DOI
Zivcova Z.V., Petrák V., Frank O., Kavan L. Electrochemical impedance spectroscopy of polycrystalline boron doped diamond layers with hydrogen and oxygen terminated surface. Diam. Relat. Mater. 2015;55:70–76. doi: 10.1016/j.diamond.2015.03.002. DOI
Itoh T., McCreery R.L. In Situ Raman Spectroelectrochemistry of Electron Transfer between Glassy Carbon and a Chemisorbed Nitroazobenzene Monolayer. J. Am. Chem. Soc. 2002;124:10894–10902. doi: 10.1021/ja020398u. PubMed DOI
Kalbac M., Kavan L., Dunsch L. An in situ Raman spectroelectrochemical study of the controlled doping of semiconducting single walled carbon nanotubes in a conducting polymer matrix. Synth. Met. 2009;159:2245–2248. doi: 10.1016/j.synthmet.2009.07.059. DOI
Frank O., Dresselhaus M.S., Kalbac M. Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Isotopically Engineered Graphene Systems. Acc. Chem. Res. 2015;48:111–118. doi: 10.1021/ar500384p. PubMed DOI
Chandrasekhar R., Choy K. Electrostatic spray assisted vapour deposition of fluorine doped tin oxide. J. Cryst. Growth. 2001;231:215–221. doi: 10.1016/S0022-0248(01)01477-4. DOI
Shiell T.B., Wong S., Yang W., Tanner C.A., Haberl B., Elliman R.G., McKenzie D.R., McCulloch D.G., Bradby J.E. The composition, structure and properties of four different glassy carbons. J. Non-Cryst. Solids. 2019;522:119561. doi: 10.1016/j.jnoncrysol.2019.119561. DOI
Kawashima Y., Katagiri G. Fundamentals, overtones, and combinations in the Raman spectrum of graphite. Phys. Rev. B. 1995;52:10053–10059. doi: 10.1103/PhysRevB.52.10053. PubMed DOI
Tuinstra F., Koenig J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970;53:1126–1130. doi: 10.1063/1.1674108. DOI
Prawer S., Nemanich R.J. Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004;362:2537–2565. doi: 10.1098/rsta.2004.1451. PubMed DOI
Dennison J.R., Holtz M., Swain G. Raman Spectroscopy of Carbon Materials. Spectroscopy. 1996;11:38–45.
Williams A.W.S., Lightowlers E.C., Collins A.T. Impurity conduction in synthetic semiconducting diamond. J. Phys. C: Solid State Phys. 1970;3:1727–1735. doi: 10.1088/0022-3719/3/8/011. DOI
Mortet V., Taylor A., Živcová Z.V., Machon D., Frank O., Hubík P., Tremouilles D., Kavan L. Analysis of heavily boron-doped diamond Raman spectrum. Diam. Relat. Mater. 2018;88:163–166. doi: 10.1016/j.diamond.2018.07.013. DOI
Bian H., Chen H., Zhang Q., Li J., Wen X., Zhuang W., Zheng J. Cation Effects on Rotational Dynamics of Anions and Water Molecules in Alkali (Li+, Na+, K+, Cs+) Thiocyanate (SCN–) Aqueous Solutions. J. Phys. Chem. B. 2013;117:7972–7984. doi: 10.1021/jp4016646. PubMed DOI
Son Y., de Tacconi N.R., Rajeshwar K. Photoelectrochemistry and Raman spectroelectrochemistry of cuprous thiocyanate films on copper electrodes in acidic media. J. Electroanal. Chem. 1993;345:135–146. doi: 10.1016/0022-0728(93)80474-V. DOI
Laser D., Bard A.J. Semiconductor electrodes. IV. Electrochemical behavior of n- and p-type silicon electrodes in acetonitrile solutions. J. Phys. Chem. 1976;80:459–466. doi: 10.1021/j100546a008. DOI
Zou Y., Walton A.S., Kinloch I.A., Dryfe R.A.W. Investigation of the Differential Capacitance of Highly Ordered Pyrolytic Graphite as a Model Material of Graphene. Langmuir. 2016;32:11448–11455. doi: 10.1021/acs.langmuir.6b02910. PubMed DOI
Van Duyne R.P., Haushalter J.P. Resonance Raman spectroelectrochemistry of semiconductor electrodes: The photooxidation of tetrathiafulvalene at n-gallium arsenide(100) in acetonitrile. J. Phys. Chem. 1984;88:2446–2451. doi: 10.1021/j150656a006. DOI
Hao H., Xie Q., Ai J., Wang Y., Bian H. Specific counter-cation effect on the molecular orientation of thiocyanate anions at the aqueous solution interface. Phys. Chem. Chem. Phys. 2020;22:10106–10115. doi: 10.1039/D0CP00974A. PubMed DOI
Gans P., Gill J.B., Griffin M. Spectrochemistry of solutions. Part 5.—Raman spectroscopic study of the coordination of silver(I) ions in liquid ammonia by thiocyanate ions. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1978;74:432–439. doi: 10.1039/f19787400432. DOI