• This record comes from PubMed

Graphene Oxide Normal (GO + Mn2+) and Ultrapure: Short-Term Impact on Selected Antioxidant Stress Markers and Cytokines in NHDF and A549 Cell Lines

. 2021 May 11 ; 10 (5) : . [epub] 20210511

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
KNW-1-078/N/8/O Medical University of Silesia in Katowice

Since biological applications and toxicity of graphene-based materials are structure dependent, studying their interactions with the biological systems is very timely and important. We studied short-term (1, 24, and 48 h) effects of ultrapure (GO) and Mn2+-contaminated (GOS) graphene oxide on normal human dermal fibroblasts (NHDF) and adenocarcinomic human alveolar basal epithelial cells (A549) using selected oxidative stress markers and cytokines: glutathione reductase (GR) and catalase (CAT) activity, total antioxidative capacity (TAC), and malondialdehyde (MDA) concentration, levels of vascular endothelial growing factor (VEGF), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor-BB (PDGF-BB), and eotaxin. GOS induced higher levels of oxidative stress, measured with CAT activity, TAC, and MDA concentration than GO in both cell lines when compared to control cells. GR activity decreased in time in NHDF cells but increased in A549 cells. The levels of cytokines were related to the exposure time and graphene oxide type in both analyzed cell lines and their levels comparably increased over time. We observed higher TNF-α levels in NHDF and higher levels of VEGF and eotaxin in the A549 cell line. Both types of cells showed similar susceptibility to GO and GOS. We concluded that the short-time exposure to GOS induced the stronger response of oxidative stress markers without collapsing the antioxidative systems of analysed cells. Increased levels of inflammatory cytokines after GO and GOS exposure were similar both in NHDF and A549 cells.

See more in PubMed

McCallion C., Burthem J., Rees-Unwin K., Golovanov A., Pluen A. Graphene in therapeutics delivery: Problems, solutions and future opportunities. Eur. J. Pharm. Biopharm. 2016;104:235–250. doi: 10.1016/j.ejpb.2016.04.015. PubMed DOI

Xu S., Zhan J., Man B., Jiang S., Yue W., Gao S., Guo C., Liu H., Li Z., Wang J., et al. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat. Comm. 2017;8:14902. doi: 10.1038/ncomms14902. PubMed DOI PMC

Ge Z., Yang L., Xiao F., Wu Y., Yu T., Chen J., Lin J., Zhang Y. Graphene Family Nanomaterials: Properties and Potential Applications in Dentistry. Int. J. Biomat. 2018;2018:1539678. doi: 10.1155/2018/1539678. PubMed DOI PMC

Yao X., Niu X., Ma K., Hunag P., Grothe J., Kaskel S., Zhu Y. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. 2017;13:1602225. doi: 10.1002/smll.201602225. PubMed DOI

Chang Y., Yang S.-T., Liu J.H., Dong E., Wang Y., Cao A., Liu Y., Wang H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011;200:201–210. doi: 10.1016/j.toxlet.2010.11.016. PubMed DOI

Gurunathan S., Iqbal M.A., Qasim M., Park C.H., Yoo H., Hwang J.H., Uhm S.J., Song H., Park C., Do J.T., et al. Evaluation of graphene oxide induced cellular toxicity and transcriptome analysis in human embryonic kidney cells. Nanomaterials. 2019;9:969. doi: 10.3390/nano9070969. PubMed DOI PMC

Seabra A.B., Paula A.J., de Lima R., Alves O.L., Duran N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 2014;27:159–168. doi: 10.1021/tx400385x. PubMed DOI

Wang Y., Wu S., Zhao X., Su Z., Du L., Sui A. In vitro toxicity evaluation of graphene oxide on human RPMI 8226 cells. Biomed. Mat. Eng. 2014;24:2007–2013. doi: 10.3233/BME-141010. PubMed DOI

Jarosz A., Skoda M., Dudek I., Szukiewicz D. Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells. Oxid. Med. Cell. Longev. 2016;2016:5851035. doi: 10.1155/2016/5851035. PubMed DOI PMC

Li R., Jia Z., Trush M.A. Defining ROS in biology and medicine. Reac. Oxyg. Species (Apex) 2016;1:9–21. doi: 10.20455/ros.2016.803. PubMed DOI PMC

Montezano C., Touyz R.M. Reactive oxygen species and endothelial function-role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin. Pharmacol. Toxicol. 2012;110:87–94. doi: 10.1111/j.1742-7843.2011.00785.x. PubMed DOI

Malarz K., Mrozek-Wilczkiewicz A., Serda M., Rejmund M., Polanski J., Musiol R. The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget. 2018;9:17689–17710. doi: 10.18632/oncotarget.24844. PubMed DOI PMC

Skrzep-Poloczek B., Poloczek J., Chełmecka E., Dulska A., Romuk E., Idzik M., Kazura W., Nabrdalik K., Gumprecht J., Jochem J., et al. The oxidative stress markers in the erythrocytes and heart muscle of obese rats relate to a high-fat diet but not to DJOS bariatric surgery. Antioxidants. 2020;9:183. doi: 10.3390/antiox9020183. PubMed DOI PMC

Ghiselli A., Serafini M., Natella F., Scaccini C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic. Biol. Med. 2000;29:1106–1114. doi: 10.1016/S0891-5849(00)00394-4. PubMed DOI

Ciriza J., del Burgo L.S., Gurruchaga H., Borras F.E., Franquesa M., Orive G., Hernandez R.M., Pedraz J.L. Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Deliv. 2018;25:1147–1160. doi: 10.1080/10717544.2018.1474966. PubMed DOI PMC

Feito M.J., Vila M., Matesanz M.C., Linares J., Goncalves G., Marques P.A.A.P., Vallet-Regi M., Rojo J.M., Potoles M.T. In vitro evaluation of graphene oxide nanosheets on immune fuction. J. Colloid Interface Sci. 2014;432:221–228. doi: 10.1016/j.jcis.2014.07.004. PubMed DOI

Lim M.-H., Jeung I.C., Jeong J., Yoon S.-J., Lee S.-H., Park J., Kang Y.-S., Lee H., Park Y.-J., Lee H.G., et al. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun-N-terminal kinases. Acta Biomater. 2016;46:191–203. doi: 10.1016/j.actbio.2016.09.018. PubMed DOI

Marković Z., Jovanović S.P., Masković P.Z., Mojsin M.M., Stevanović M.J., Danko M., Micusik M., Jovanović D.J., Kleinova A., Spitalsky Z., et al. Graphene oxide siza and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity on three cancer cell lines. J. Photochem. Photobiol. B Biol. 2019;200:111647. doi: 10.1016/j.jphotobiol.2019.111647. PubMed DOI

Halim A., Liu L., Ariyanti A.D., Ju Y., Luo Q., Song G. Low-dose suspended graphene oxide nanosheets induce antioxidant response and osteogenic differentiation of bone marrow-derived mesenchymal stem cells via JNK-dependent FoxO1 activation. J. Mater. Chem. B. 2019;7:5998–6009. doi: 10.1039/C9TB01413F. PubMed DOI

Zhao G., Li J., Ren X., Chen C., Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011;45:10454–10462. doi: 10.1021/es203439v. PubMed DOI

Stengl V. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chemistry. 2012;18:14047–14054. doi: 10.1002/chem.201201411. PubMed DOI

Ederer J., Janoš P., Ecorchard P., Tolasz J., Štengl V., Beneš H., Perchacz M., Pop-Georgievski O. Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Adv. 2017;7:12464–12473. doi: 10.1039/C6RA28745J. DOI

Ederer J., Janoš P., Ecorchard P., Štengl V., Bělčická Z., Šťastný M., Pop-Georgievski O., Dohnal V. Quantitative determination of acidic groups in functionalized graphene by direct titration. React. Funct. Polym. 2016;103:44–53. doi: 10.1016/j.reactfunctpolym.2016.03.021. DOI

Ahlinder L., Henych J., Wiklund Lindström S., Ekstrand-Hammarström B., Stengl V., Österlund L. Graphene oxide nanoparticle attachment and its toxicity on living lung epithelial cells. RSC Adv. 2015;5:59447–59457. doi: 10.1039/C5RA09351A. DOI

Carlberg I., Mannervik B. Glutathione reductase. Meth. Enzymol. 1985;113:484–490. PubMed

Aebi H. Catalase in vitro. Meth. Enzymol. 1984;105:121–126. PubMed

Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004;37:277–285. doi: 10.1016/j.clinbiochem.2003.11.015. PubMed DOI

Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI

Anjum N.A., Singh N., Singh M.K., Sayeed I., Duarte A.C., Pereira E., Ahmad I. Single bilayer grapheme oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.) Sci. Total Environ. 2014;472:834–841. doi: 10.1016/j.scitotenv.2013.11.018. PubMed DOI

Guo X., Mei N. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 2014;22:105–115. doi: 10.1016/j.jfda.2014.01.009. PubMed DOI PMC

Yu B.P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 1994;74:139–162. doi: 10.1152/physrev.1994.74.1.139. PubMed DOI

Wei X.-L., Ge Z.-Q. Effect of graphene oxide on conformation and activity of catalase. Carbon. 2013;60:401–409. doi: 10.1016/j.carbon.2013.04.052. DOI

Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI

Erel O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005;38:1103–1111. doi: 10.1016/j.clinbiochem.2005.08.008. PubMed DOI

Sullivan L.B., Gui D.Y., van der Heiden M.G. Altered metabolite levels in cancer: Implications for tumour biology and cancer therapy. Nat. Rev. Cancer. 2016;16:680–693. doi: 10.1038/nrc.2016.85. PubMed DOI

Wullkopf L., West A.V., Leijnse N., Cox T.R., Madsen C.D., Oddershede L.B., Erler J.T. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol. Biol. Cell. 2018;29:2378–2385. doi: 10.1091/mbc.E18-05-0319. PubMed DOI PMC

Gkretsi V., Stylianopoulos T. Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis. Front. Oncol. 2018;8:145. doi: 10.3389/fonc.2018.00145. PubMed DOI PMC

Hu W., Peng C., Lv M., Li X., Zhang Y., Chen N., Fan C., Huang Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 2011;5:3693–3700. doi: 10.1021/nn200021j. PubMed DOI

Liao K.-H., Lin Y.-S., Macosko C.W., Haynes C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mat. Interfaces. 2011;3:2607–2615. doi: 10.1021/am200428v. PubMed DOI

Aschner M., Guilarte T.R., Schneider J.S., Zheng W. Manganese recent advances in understanding its transport and neurotoxicity. Toxicol. Appl. Pharmacol. 2007;221:131–147. doi: 10.1016/j.taap.2007.03.001. PubMed DOI PMC

Sanchez V.C., Jachak A., Hurt R.H., Kane A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol. 2012;25:15–34. doi: 10.1021/tx200339h. PubMed DOI PMC

Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13:9–22. doi: 10.1096/fasebj.13.1.9. PubMed DOI

Palmer B.F., Clegg D.J. Oxygen sensing and metabolic homeostasis. Mol. Cell. Endocrinol. 2014;397:51–57. doi: 10.1016/j.mce.2014.08.001. PubMed DOI

Ferrara N. Vascular endothelial growth factor: Basic science and clinical progress. Endocrine Rev. 2004;25:581–611. doi: 10.1210/er.2003-0027. PubMed DOI

Ou L., Song B., Liang H., Liu J., Feng X., Deng B., Sun T., Shao L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016;13:57. doi: 10.1186/s12989-016-0168-y. PubMed DOI PMC

Old L.J. Tumor necrosis factor (TNF) Science. 1985;230:630–632. doi: 10.1126/science.2413547. PubMed DOI

Oefner C., D’Arcy A., Winkler F.K., Eggimann B., Hosang M. Crystal structure of human platelet-derived growth factor BB. EMBO J. 1992;11:3921–3926. doi: 10.1002/j.1460-2075.1992.tb05485.x. PubMed DOI PMC

Braeuer R.R., Zigler M., Villares G.J., Dobroff A.S., Bar-Eli M. Transcriptional control of melanoma metastasis: The importance of the tumor microenvironment. Seminars Cancer Biol. 2011;21:83–88. doi: 10.1016/j.semcancer.2010.12.007. PubMed DOI PMC

Appelmann I., Liersch R., Kessler T., Mesters R.M., Berdel W.E. Angiogenesis inhibition in cancer therapy: Platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: Biological functions and role in malignancy. Recent Results Cancer Res. 2010;180:51–81. PubMed

Gelfand E.W., Levy N. Eosinophils in Human Disease. In: Lee J., Rosenberg H., editors. Eosinophils in Health and Disease. Academic Press; Cambridge, MA, USA: 2012. pp. 431–536.

Roberts J.R., Mercer R.R., Stefaniak A.B., Seehra M.S., Geddam U.K., Chaudhuri I.S., Kyrlidis A., Kodali V.K., Sager T., Kenyon A., et al. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: A member of the graphene-based nanomaterial family. Particle Fibre Toxicol. 2015;13:34. doi: 10.1186/s12989-016-0145-5. PubMed DOI PMC

US EPA: Drinking Water Health Advisory for Manganese. Health and Ecological Criteria Division; Washington, DC, USA: 2004.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...