Graphene Oxide Normal (GO + Mn2+) and Ultrapure: Short-Term Impact on Selected Antioxidant Stress Markers and Cytokines in NHDF and A549 Cell Lines
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
KNW-1-078/N/8/O
Medical University of Silesia in Katowice
PubMed
34065001
PubMed Central
PMC8151183
DOI
10.3390/antiox10050765
PII: antiox10050765
Knihovny.cz E-resources
- Keywords
- A549, GO, NHDF, cytokines, graphene oxide, graphene-based materials, oxidative stress markers,
- Publication type
- Journal Article MeSH
Since biological applications and toxicity of graphene-based materials are structure dependent, studying their interactions with the biological systems is very timely and important. We studied short-term (1, 24, and 48 h) effects of ultrapure (GO) and Mn2+-contaminated (GOS) graphene oxide on normal human dermal fibroblasts (NHDF) and adenocarcinomic human alveolar basal epithelial cells (A549) using selected oxidative stress markers and cytokines: glutathione reductase (GR) and catalase (CAT) activity, total antioxidative capacity (TAC), and malondialdehyde (MDA) concentration, levels of vascular endothelial growing factor (VEGF), tumor necrosis factor-alpha (TNF-α), platelet-derived growth factor-BB (PDGF-BB), and eotaxin. GOS induced higher levels of oxidative stress, measured with CAT activity, TAC, and MDA concentration than GO in both cell lines when compared to control cells. GR activity decreased in time in NHDF cells but increased in A549 cells. The levels of cytokines were related to the exposure time and graphene oxide type in both analyzed cell lines and their levels comparably increased over time. We observed higher TNF-α levels in NHDF and higher levels of VEGF and eotaxin in the A549 cell line. Both types of cells showed similar susceptibility to GO and GOS. We concluded that the short-time exposure to GOS induced the stronger response of oxidative stress markers without collapsing the antioxidative systems of analysed cells. Increased levels of inflammatory cytokines after GO and GOS exposure were similar both in NHDF and A549 cells.
See more in PubMed
McCallion C., Burthem J., Rees-Unwin K., Golovanov A., Pluen A. Graphene in therapeutics delivery: Problems, solutions and future opportunities. Eur. J. Pharm. Biopharm. 2016;104:235–250. doi: 10.1016/j.ejpb.2016.04.015. PubMed DOI
Xu S., Zhan J., Man B., Jiang S., Yue W., Gao S., Guo C., Liu H., Li Z., Wang J., et al. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat. Comm. 2017;8:14902. doi: 10.1038/ncomms14902. PubMed DOI PMC
Ge Z., Yang L., Xiao F., Wu Y., Yu T., Chen J., Lin J., Zhang Y. Graphene Family Nanomaterials: Properties and Potential Applications in Dentistry. Int. J. Biomat. 2018;2018:1539678. doi: 10.1155/2018/1539678. PubMed DOI PMC
Yao X., Niu X., Ma K., Hunag P., Grothe J., Kaskel S., Zhu Y. Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small. 2017;13:1602225. doi: 10.1002/smll.201602225. PubMed DOI
Chang Y., Yang S.-T., Liu J.H., Dong E., Wang Y., Cao A., Liu Y., Wang H. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 2011;200:201–210. doi: 10.1016/j.toxlet.2010.11.016. PubMed DOI
Gurunathan S., Iqbal M.A., Qasim M., Park C.H., Yoo H., Hwang J.H., Uhm S.J., Song H., Park C., Do J.T., et al. Evaluation of graphene oxide induced cellular toxicity and transcriptome analysis in human embryonic kidney cells. Nanomaterials. 2019;9:969. doi: 10.3390/nano9070969. PubMed DOI PMC
Seabra A.B., Paula A.J., de Lima R., Alves O.L., Duran N. Nanotoxicity of graphene and graphene oxide. Chem. Res. Toxicol. 2014;27:159–168. doi: 10.1021/tx400385x. PubMed DOI
Wang Y., Wu S., Zhao X., Su Z., Du L., Sui A. In vitro toxicity evaluation of graphene oxide on human RPMI 8226 cells. Biomed. Mat. Eng. 2014;24:2007–2013. doi: 10.3233/BME-141010. PubMed DOI
Jarosz A., Skoda M., Dudek I., Szukiewicz D. Oxidative stress and mitochondrial activation as the main mechanisms underlying graphene toxicity against human cancer cells. Oxid. Med. Cell. Longev. 2016;2016:5851035. doi: 10.1155/2016/5851035. PubMed DOI PMC
Li R., Jia Z., Trush M.A. Defining ROS in biology and medicine. Reac. Oxyg. Species (Apex) 2016;1:9–21. doi: 10.20455/ros.2016.803. PubMed DOI PMC
Montezano C., Touyz R.M. Reactive oxygen species and endothelial function-role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin. Pharmacol. Toxicol. 2012;110:87–94. doi: 10.1111/j.1742-7843.2011.00785.x. PubMed DOI
Malarz K., Mrozek-Wilczkiewicz A., Serda M., Rejmund M., Polanski J., Musiol R. The role of oxidative stress in activity of anticancer thiosemicarbazones. Oncotarget. 2018;9:17689–17710. doi: 10.18632/oncotarget.24844. PubMed DOI PMC
Skrzep-Poloczek B., Poloczek J., Chełmecka E., Dulska A., Romuk E., Idzik M., Kazura W., Nabrdalik K., Gumprecht J., Jochem J., et al. The oxidative stress markers in the erythrocytes and heart muscle of obese rats relate to a high-fat diet but not to DJOS bariatric surgery. Antioxidants. 2020;9:183. doi: 10.3390/antiox9020183. PubMed DOI PMC
Ghiselli A., Serafini M., Natella F., Scaccini C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radic. Biol. Med. 2000;29:1106–1114. doi: 10.1016/S0891-5849(00)00394-4. PubMed DOI
Ciriza J., del Burgo L.S., Gurruchaga H., Borras F.E., Franquesa M., Orive G., Hernandez R.M., Pedraz J.L. Graphene oxide enhances alginate encapsulated cells viability and functionality while not affecting the foreign body response. Drug Deliv. 2018;25:1147–1160. doi: 10.1080/10717544.2018.1474966. PubMed DOI PMC
Feito M.J., Vila M., Matesanz M.C., Linares J., Goncalves G., Marques P.A.A.P., Vallet-Regi M., Rojo J.M., Potoles M.T. In vitro evaluation of graphene oxide nanosheets on immune fuction. J. Colloid Interface Sci. 2014;432:221–228. doi: 10.1016/j.jcis.2014.07.004. PubMed DOI
Lim M.-H., Jeung I.C., Jeong J., Yoon S.-J., Lee S.-H., Park J., Kang Y.-S., Lee H., Park Y.-J., Lee H.G., et al. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun-N-terminal kinases. Acta Biomater. 2016;46:191–203. doi: 10.1016/j.actbio.2016.09.018. PubMed DOI
Marković Z., Jovanović S.P., Masković P.Z., Mojsin M.M., Stevanović M.J., Danko M., Micusik M., Jovanović D.J., Kleinova A., Spitalsky Z., et al. Graphene oxide siza and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity on three cancer cell lines. J. Photochem. Photobiol. B Biol. 2019;200:111647. doi: 10.1016/j.jphotobiol.2019.111647. PubMed DOI
Halim A., Liu L., Ariyanti A.D., Ju Y., Luo Q., Song G. Low-dose suspended graphene oxide nanosheets induce antioxidant response and osteogenic differentiation of bone marrow-derived mesenchymal stem cells via JNK-dependent FoxO1 activation. J. Mater. Chem. B. 2019;7:5998–6009. doi: 10.1039/C9TB01413F. PubMed DOI
Zhao G., Li J., Ren X., Chen C., Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011;45:10454–10462. doi: 10.1021/es203439v. PubMed DOI
Stengl V. Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chemistry. 2012;18:14047–14054. doi: 10.1002/chem.201201411. PubMed DOI
Ederer J., Janoš P., Ecorchard P., Tolasz J., Štengl V., Beneš H., Perchacz M., Pop-Georgievski O. Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation. RSC Adv. 2017;7:12464–12473. doi: 10.1039/C6RA28745J. DOI
Ederer J., Janoš P., Ecorchard P., Štengl V., Bělčická Z., Šťastný M., Pop-Georgievski O., Dohnal V. Quantitative determination of acidic groups in functionalized graphene by direct titration. React. Funct. Polym. 2016;103:44–53. doi: 10.1016/j.reactfunctpolym.2016.03.021. DOI
Ahlinder L., Henych J., Wiklund Lindström S., Ekstrand-Hammarström B., Stengl V., Österlund L. Graphene oxide nanoparticle attachment and its toxicity on living lung epithelial cells. RSC Adv. 2015;5:59447–59457. doi: 10.1039/C5RA09351A. DOI
Carlberg I., Mannervik B. Glutathione reductase. Meth. Enzymol. 1985;113:484–490. PubMed
Aebi H. Catalase in vitro. Meth. Enzymol. 1984;105:121–126. PubMed
Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004;37:277–285. doi: 10.1016/j.clinbiochem.2003.11.015. PubMed DOI
Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3. PubMed DOI
Anjum N.A., Singh N., Singh M.K., Sayeed I., Duarte A.C., Pereira E., Ahmad I. Single bilayer grapheme oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.) Sci. Total Environ. 2014;472:834–841. doi: 10.1016/j.scitotenv.2013.11.018. PubMed DOI
Guo X., Mei N. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 2014;22:105–115. doi: 10.1016/j.jfda.2014.01.009. PubMed DOI PMC
Yu B.P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 1994;74:139–162. doi: 10.1152/physrev.1994.74.1.139. PubMed DOI
Wei X.-L., Ge Z.-Q. Effect of graphene oxide on conformation and activity of catalase. Carbon. 2013;60:401–409. doi: 10.1016/j.carbon.2013.04.052. DOI
Dreyer D.R., Park S., Bielawski C.W., Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010;39:228–240. doi: 10.1039/B917103G. PubMed DOI
Erel O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005;38:1103–1111. doi: 10.1016/j.clinbiochem.2005.08.008. PubMed DOI
Sullivan L.B., Gui D.Y., van der Heiden M.G. Altered metabolite levels in cancer: Implications for tumour biology and cancer therapy. Nat. Rev. Cancer. 2016;16:680–693. doi: 10.1038/nrc.2016.85. PubMed DOI
Wullkopf L., West A.V., Leijnse N., Cox T.R., Madsen C.D., Oddershede L.B., Erler J.T. Cancer cells’ ability to mechanically adjust to extracellular matrix stiffness correlates with their invasive potential. Mol. Biol. Cell. 2018;29:2378–2385. doi: 10.1091/mbc.E18-05-0319. PubMed DOI PMC
Gkretsi V., Stylianopoulos T. Cell adhesion and matrix stiffness: Coordinating cancer cell invasion and metastasis. Front. Oncol. 2018;8:145. doi: 10.3389/fonc.2018.00145. PubMed DOI PMC
Hu W., Peng C., Lv M., Li X., Zhang Y., Chen N., Fan C., Huang Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano. 2011;5:3693–3700. doi: 10.1021/nn200021j. PubMed DOI
Liao K.-H., Lin Y.-S., Macosko C.W., Haynes C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mat. Interfaces. 2011;3:2607–2615. doi: 10.1021/am200428v. PubMed DOI
Aschner M., Guilarte T.R., Schneider J.S., Zheng W. Manganese recent advances in understanding its transport and neurotoxicity. Toxicol. Appl. Pharmacol. 2007;221:131–147. doi: 10.1016/j.taap.2007.03.001. PubMed DOI PMC
Sanchez V.C., Jachak A., Hurt R.H., Kane A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem. Res. Toxicol. 2012;25:15–34. doi: 10.1021/tx200339h. PubMed DOI PMC
Neufeld G., Cohen T., Gengrinovitch S., Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999;13:9–22. doi: 10.1096/fasebj.13.1.9. PubMed DOI
Palmer B.F., Clegg D.J. Oxygen sensing and metabolic homeostasis. Mol. Cell. Endocrinol. 2014;397:51–57. doi: 10.1016/j.mce.2014.08.001. PubMed DOI
Ferrara N. Vascular endothelial growth factor: Basic science and clinical progress. Endocrine Rev. 2004;25:581–611. doi: 10.1210/er.2003-0027. PubMed DOI
Ou L., Song B., Liang H., Liu J., Feng X., Deng B., Sun T., Shao L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol. 2016;13:57. doi: 10.1186/s12989-016-0168-y. PubMed DOI PMC
Old L.J. Tumor necrosis factor (TNF) Science. 1985;230:630–632. doi: 10.1126/science.2413547. PubMed DOI
Oefner C., D’Arcy A., Winkler F.K., Eggimann B., Hosang M. Crystal structure of human platelet-derived growth factor BB. EMBO J. 1992;11:3921–3926. doi: 10.1002/j.1460-2075.1992.tb05485.x. PubMed DOI PMC
Braeuer R.R., Zigler M., Villares G.J., Dobroff A.S., Bar-Eli M. Transcriptional control of melanoma metastasis: The importance of the tumor microenvironment. Seminars Cancer Biol. 2011;21:83–88. doi: 10.1016/j.semcancer.2010.12.007. PubMed DOI PMC
Appelmann I., Liersch R., Kessler T., Mesters R.M., Berdel W.E. Angiogenesis inhibition in cancer therapy: Platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) and their receptors: Biological functions and role in malignancy. Recent Results Cancer Res. 2010;180:51–81. PubMed
Gelfand E.W., Levy N. Eosinophils in Human Disease. In: Lee J., Rosenberg H., editors. Eosinophils in Health and Disease. Academic Press; Cambridge, MA, USA: 2012. pp. 431–536.
Roberts J.R., Mercer R.R., Stefaniak A.B., Seehra M.S., Geddam U.K., Chaudhuri I.S., Kyrlidis A., Kodali V.K., Sager T., Kenyon A., et al. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: A member of the graphene-based nanomaterial family. Particle Fibre Toxicol. 2015;13:34. doi: 10.1186/s12989-016-0145-5. PubMed DOI PMC
US EPA: Drinking Water Health Advisory for Manganese. Health and Ecological Criteria Division; Washington, DC, USA: 2004.