Applicability of Fuzzy Logic and Artificial Neural Network for Unpaved Airfield Surface Bearing Strength Prediction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34066222
PubMed Central
PMC8150640
DOI
10.3390/s21103373
PII: s21103373
Knihovny.cz E-zdroje
- Klíčová slova
- airfield, airport, artificial neural network, bearing strength, fuzzy logic, prediction model, surface, unpaved,
- Publikační typ
- časopisecké články MeSH
The main objective of this paper is to describe a building process of a model predicting the soil strength at unpaved airport surfaces (unpaved runways, safety areas in runway proximity, runway strips, and runway end safety areas). The reason for building this model is to partially substitute frequent and meticulous inspections of an airport movement area comprising the bearing strength evaluation and provide an efficient tool to organize surface maintenance. Since the process of building such a model is complex for a physical model, it is anticipated that it might be addressed by a statistical model instead. Therefore, fuzzy logic (FL) and artificial neural network (ANN) capabilities are investigated and compared with linear regression function (LRF). Large data sets comprising the bearing strength and meteorological characteristics are applied to train the likely model variations to be subsequently compared with the application of standard statistical quantitative parameters. All the models prove that the inclusion of antecedent soil strength as an additional model input has an immense impact on the increase in model accuracy. Although the M7 model out of the ANN group displays the best performance, the M3 model is considered for practical implications being less complicated and having fewer inputs. In general, both the ANN and FL models outperform the LRF models well in all the categories. The FL models perform almost equally as well as the ANN but with slightly decreased accuracy.
Zobrazit více v PubMed
Biancardo S.A., Viscione N., Oreto C., Veropalumbo R., Abbondati F. BIM approach for modeling airports terminal expansion. Infrastructures. 2020;5:41. doi: 10.3390/infrastructures5050041. DOI
Cicmanec L., Marek V. Bearing strength of unpaved airport surfaces: Optimization of number of measurements; Proceedings of the ICMT 2019—7th International Conference on Military Technologies; Brno, Czech Republic. 30–31 May 2019; pp. 1–6. DOI
Ranieri V., Berloco N., D’Auria D., Disalvo V., Fedele V., Intini P., Colonna P. Determination of Bearing Capacity of Cleared and Graded Areas at Airports. J. Transp. Eng. Part B Pavements. 2021;147 doi: 10.1061/JPEODX.0000247. DOI
International Civil Aviation Organisation . Annex 14 Aerodromes, Volume I: Aerodrome Design and Operations. International Civil Aviation Organization; Montreal, QC, Canada: 2004. pp. 235–237.
International Civil Aviation Organisation . DOC 9157 Aerodrome Design Manual. Part 1 Runways. 3rd ed. International Civil Aviation Organization; Montreal, QC, Canada: 2006. pp. 5–13.
Cicmanec L., Petrasek D. Runway excursions: Bearing strength measurement concerns; Proceedings of the 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC); San Diego, CA, USA. 8–12 September 2019; pp. 1–6. DOI
Whitlow R. Basic Soil Mechanics. Longman Scientific & Technical; Harlow, UK: 1992.
Terzaghi K., Peck R.B., Mesri G. Soil Mechanics in Engineering Practice. John Wiley & Sons; Hoboken, NJ, USA: 1996.
ASTM D1883-16, Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils. ASTM International; West Conshohocken, PA, USA: 2016. DOI
ASTM D4429-09a, Standard Test Method for CBR (California Bearing Ratio) of Soils in Place. ASTM International; West Conshohocken, PA, USA: 2009. DOI
Decky M., Remisova E., Mecar M., Bartuska L., Lizbetin J., Dreveny I. In situ Determination of Load Bearing Capacity of Soils on the Airfields. Procedia Earth Planet. Sci. 2015;15:11–18. doi: 10.1016/j.proeps.2015.08.004. DOI
Motaghedi H., Eslami A. Analytical Approach for Determination of Soil Shear Strength Parameters from CPT and CPTu Data. Arab. J. Sci. Eng. 2014;39:4363–4376. doi: 10.1007/s13369-014-1022-x. DOI
Sullivan P.M., Bullock C.D., Renfroe N.A., Albert M.R., Koenig G.G., Peck L., O’Neill K. Tech. Rep. GL-97-15 Soil Moisture Strength Prediction Model Version II (SMSP II) US Army Waterways Experiment Station; Vicksburg, MS, USA: 1997. p. 117.
Kennedy J.G., Rush E.S., Turnage G.W., Morris P.A. TR-GL-88-13 Updated Soil Moisture–Strength Prediction (SMSP) Methodology. US Army Engineer Waterways Experiment Station; Vicksburg, MS, USA: 1988.
Saxton K.E., Johnson H.P., Shaw R.H. Modeling Evapotranspiration and Soil Moisture. Trans. Am. Soc. Agric. Eng. 1974;17:673–677. doi: 10.13031/2013.36935. DOI
McGann C.R., Bradley B.A., Taylor M.L., Wotherspoon L.M., Cubrinovski M. Development of an empirical correlation for predicting shear wave velocity of Christchurch soils from cone penetration test data. Soil Dyn. Earthq. Eng. 2015;75:66–75. doi: 10.1016/j.soildyn.2015.03.023. DOI
Collins J.G. Tech. Rep. Influence of Water Tables on Soil Moisture and Soil Strength. Report on Soil Trafficability Prediction. US Army Waterways Experiment Station; Vicksburg, MS, USA: 1967.
Baladi G.Y., Rohani B. TR-GL-79-6 A Terrain-Vehicle Interaction Model for Analysis of Steering Performance of Track-Laying Vehicle. US Army Engineer Waterways Experiment Station; Vicksburg, MS, USA: 1979.
McCullough M., Jayakumar P., Dasch J., Gorsich D. The Next Generation NATO Reference mobility model development. J. Terramechan. 2017;73:49–60. doi: 10.1016/j.jterra.2017.06.002. DOI
Beven K.J. Rainfall-Runoff Modelling: The Primer. 2nd ed. John Wiley & Sons; Hoboken, NJ, USA: 2012.
Knight S.J. Some Factors Affecting Moisture Content-Density-Cone Index Relations. US Army Engineer Waterways Experiment Station; Vicksburg, MS, USA: 1961.
Asteris P.G., Roussis P.C., Douvika M.G. Feed-forward neural network prediction of the mechanical properties of sandcrete materials. Sensors. 2017;17:1344. doi: 10.3390/s17061344. PubMed DOI PMC
Mullai P., Rene E.R., Park H.S., Sabarathinam P.L. Handbook of Research on Industrial Informatics and Manufacturing Intelligence: Innovations and Solutions. IGI Global; Hershey, PA, USA: 2012. Adaptive Network Based Fuzzy Interference System (ANFIS) Modeling of an Anaerobic Wastewater Treatment Process; pp. 252–270. DOI
Liou Y.A., Galantowicz J.F., England A.W. A Land Surface Process/Radiobrightness Model with Coupled Heat and Moisture Transport for Prairie Grassland. IEEE Trans. Geosci. Remote Sens. 1999;37:1848–1859. doi: 10.1109/36.774698. DOI
Baghdadi N., Gaultier S., King C. Retrieving surface roughness and soil moisture from synthetic aperture radar (SAR) data using neural networks. Can. J. Remote Sens. 2002;28:701–711. doi: 10.5589/m02-066. DOI
Bouttier F., Mahfouf J.-F., Noilhan J. Sequential Assimilation of Soil Moisture from Atmospheric Low-Level Parameters. Part I: Sensitivity and Calibration Studies. J. Appl. Meteorol. Climatol. 1993;32:1335–1351. doi: 10.1175/1520-0450(1993)032<1335:SAOSMF>2.0.CO;2. DOI
Gill M.K., Asefa T., Kemblowski M.W., McKee M. Soil moisture prediction using support vector machines. J. Am. Water Resour. Assoc. 2006;42:1033–1046. doi: 10.1111/j.1752-1688.2006.tb04512.x. DOI
Padmini D., Ilamparuthi K., Sudheer K.P. Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput. Geotech. 2008;35:33–46. doi: 10.1016/j.compgeo.2007.03.001. DOI
Kuo Y.L., Jaksa M.B., Lyamin A.V., Kaggwa W.S. ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Comput. Geotech. 2009;36:503–516. doi: 10.1016/j.compgeo.2008.07.002. DOI
Kiran S., Lal B., Tripathy S.S. Shear Strength Prediction of Soil based on Probabilistic Neural Network. Indian J. Sci. Technol. 2016;9 doi: 10.17485/ijst/2016/v9i41/99188. DOI
Kanungo D.P., Sharma S., Pain A. Artificial Neural Network (ANN) and Regression Tree (CART) applications for the indirect estimation of unsaturated soil shear strength parameters. Front. Earth Sci. 2014;8:439–456. doi: 10.1007/s11707-014-0416-0. DOI
Dawson C.W., Wilby R. An artificial neural network approach to rainfall-runoff modelling. Hydrol. Sci. J. 1998;43:47–66. doi: 10.1080/02626669809492102. DOI
Senthil Kumar A.R., Sudheer K.P., Jain S.K., Agarwal P.K. Rainfall-runoff modelling using artificial neural networks: Comparison of network types. Hydrol. Process. 2005;19:1277–1291. doi: 10.1002/hyp.5581. DOI
Lohani A.K., Goel N.K., Bhatia K.K.S. Takagi–Sugeno fuzzy inference system for modeling stage–discharge relationship. J. Hydrol. 2006;331:146–160. doi: 10.1016/j.jhydrol.2006.05.007. DOI
Şen Z., Altunkaynak A. Fuzzy awakening in rainfall-runoff modeling. Hydrol. Res. 2004;35:31–43. doi: 10.2166/nh.2004.0003. DOI
Cicmanec L., Safranko J., Petrasek M. Application of altered methodology for bearing strength measurements of unpaved airport surfaces; Proceedings of the 22nd International Scientific Conference Transport Means 2018; Kaunas, Lithuania. 3–5 October 2018; pp. 336–341.
Kutner M.H., Nachtsheim C.J., Neter J., Li W. Applied Linear Statistical Models. 5th ed. McGraw-Hill Irwin; New York, NY, USA: 1997. p. 233. DOI
Seber G.A.F., Lee A.J. Linear Regression Analysis. 2nd ed. Volume 329. John Wiley & Sons; Hoboken, NJ, USA: 2012.
Jang J.-S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man. Cybern. 1993;23:665–685. doi: 10.1109/21.256541. DOI
Jang J.-S.R., Sun C.-T. Neuro-fuzzy modeling and control. Proc. IEEE. 1995;83:378–406. doi: 10.1109/5.364486. DOI
Jang J.S.R., Sun C.T., Mizutani E. Neuro-Fuzzy and Soft Computing—A Computational Approach to Learning and Machine Intelligence [Book Review] IEEE Trans. Autom. Control. 1997;42:1482–1484. doi: 10.1109/TAC.1997.633847. DOI
Wang L.-X. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Prentice-Hall, Inc.; Hoboken, NJ, USA: 1994.
Werbos P. Ph.D. Thesis. Harvard University; Cambridge, MA, USA: 1974. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral.
Principe J.C., Euliano N.R., Lefebvre W.C. Neural and Adaptive Systems: Fundamentals through Simulations. Volume 672. John Wiley & Sons; Hoboken, NJ, USA: 2000.
Lehmann E.L., Casella G. Theory of Point Estimation. 2nd ed. Volume 41. Springer Inc.; New York, NY, USA: 1998.
Legates D.R., McCabe G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999;35:233–241. doi: 10.1029/1998WR900018. DOI
Schaap M.G., Leij F.J. Database-related accuracy and uncertainty of pedotransfer functions. Soil Sci. 1998;163:765–779. doi: 10.1097/00010694-199810000-00001. DOI