An updated structural model of the A domain of the Pseudomonas putida XylR regulator poses an atypical interplay with aromatic effectors
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34097798
DOI
10.1111/1462-2920.15628
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- modely strukturální MeSH
- plazmidy MeSH
- proteomika MeSH
- Pseudomonas putida * genetika metabolismus MeSH
- regulace genové exprese u bakterií MeSH
- transkripční faktory genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA vazebné proteiny MeSH
- transkripční faktory MeSH
A revised model of the aromatic binding A domain of the σ54 -dependent regulator XylR of Pseudomonas putida mt-2 was produced based on the known 3D structures of homologous regulators PoxR, MopR and DmpR. The resulting frame was instrumental for mapping a number of mutations known to alter effector specificity, which were then reinterpreted under a dependable spatial reference. Some of these changes involved the predicted aromatic binding pocket but others occurred in distant locations, including dimerization interfaces and putative zinc binding site. The effector pocket was buried within the protein structure and accessible from the outside only through a narrow tunnel. Yet, several loop regions of the A domain could provide the flexibility required for widening such a tunnel for passage of aromatic ligands. The model was experimentally validated by treating the cells in vivo and the purified protein in vitro with benzyl bromide, which reacts with accessible nucleophilic residues on the protein surface. Structural and proteomic analyses confirmed the predicted in/out distribution of residues but also supported two additional possible scenarios of interaction of the A domain with aromatic effectors: a dynamic interaction of the fully structured yet flexible protein with the aromatic partner and/or inducer-assisted folding of the A domain.
Zobrazit více v PubMed
Abril, M.A., Michan, C., Timmis, K.N., and Ramos, J.L. (1989) Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J Bacteriol 171: 6782-6790.
Bischoff, R., and Schlüter, H. (2012) Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications. J Proteomics 75: 2275-2296.
Bush, M., and Dixon, R. (2012) The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev MMBR 76: 497-529.
Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., and Thompson, J.D. (2003) Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31: 3497-3500.
de las Heras, A., Carreño, C.A., and de Lorenzo, V. (2008) Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release. Environ Microbiol 10: 3305-3316.
de las Heras, A., and de Lorenzo, V. (2011) Cooperative amino acid changes shift the response of the σ54-dependent regulator XylR from natural m-xylene towards xenobiotic 2,4-dinitrotoluene. Mol Microbiol 79: 1248-1259.
de Lorenzo, V., Herrero, M., Metzke, M., and Timmis, K.N. (1991) An upstream XylR- and IHF-induced nucleoprotein complex regulates the sigma 54-dependent Pu promoter of TOL plasmid. EMBO J 10: 1159-1167.
Delgado, A., and Ramos, J.L. (1994) Genetic evidence for activation of the positive transcriptional regulator Xy1R, a member of the NtrC family of regulators, by effector binding. J Biol Chem 269: 8059-8062.
Delgado, A., Salto, R., Marqués, S., and Ramos, J.L. (1995) Single amino acids changes in the signal receptor domain of XylR resulted in mutants that stimulate transcription in the absence of effectors. J Biol Chem 270: 5144-5150.
Devos, D., Garmendia, J., de Lorenzo, V., and Valencia, A. (2002) Deciphering the action of aromatic effectors on the prokaryotic enhancer-binding protein XylR: a structural model of its N-terminal domain. Environ Microbiol 4: 29-41.
Galvão, T.C., and de Lorenzo, V. (2006) Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 17: 34-42.
Galvão, T.C., Mencía, M., and de Lorenzo, V. (2007) Emergence of novel functions in transcriptional regulators by regression to stem protein types. Mol Microbiol 65: 907-919.
Garmendia, J., de las Heras, A., Galvão, T.C., and De Lorenzo, V. (2008) Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. J Microbial Biotechnol 1: 236-246.
Garmendia, J., Devos, D., Valencia, A., and de Lorenzo, V. (2001) A la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors. Mol Microbiol 42: 47-59.
Gingras, A.-C., Gstaiger, M., Raught, B., and Aebersold, R. (2007) Analysis of protein complexes using mass spectrometry. Nat Rev Mol Cell Biol 8: 645-654.
Huang, W.E., Singer, A.C., Spiers, A.J., Preston, G.M., and Whiteley, A.S. (2008) Characterizing the regulation of the Pu promoter in Acinetobacter baylyi ADP1. Environ Microbiol 10: 1668-1680.
Kim, M.N., Park, H.V., Lim, W.K., and Shin, H.J. (2005) Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J Microbiol Methods 60: 235-245.
Klausen, M.S., Jespersen, M.C., Nielsen, H., Jensen, K.K., Jurtz, V.I., Sønderby, C.K., et al. (2019) NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins Struct Funct Bioinform 87: 520-527.
Klvana, M., Pavlova, M., Koudelakova, T., Chaloupkova, R., Dvorak, P., Prokop, Z., et al. (2009) Pathways and mechanisms for product release in the engineered haloalkane dehalogenases explored using classical and random acceleration molecular dynamics simulations. J Mol Biol 392: 1339-1356.
Laitaoja, M., Valjakka, J., and Jänis, J. (2013) Zinc coordination spheres in protein structures. Inorg Chem 52: 10983-10991.
Lang, S., Spratt, D.E., Guillemette, J.G., and Palmer, M. (2006) Selective labeling of selenomethionine residues in proteins with a fluorescent derivative of benzyl bromide. Anal Biochem 359: 253-258.
Li, X., Wang, J., Bai, N., Zhang, X., Han, X., da Silva, I., et al. (2020) Refinement of pore size at sub-angstrom precision in robust metal-organic frameworks for separation of xylenes. Nat Commun 11: 4280.
Mattson, G., Conklin, E., Desai, S., Nielander, G., Savage, M.D., and Morgensen, S. (1993) A practical approach to crosslinking. Mol Biol Rep 17: 167-183.
Miller, J.H. (1972) Experiments in molecular genetics, [Cold Spring Harbor, N.Y.]: Cold Spring Harbor Laboratory.
North, A.K., Klose, K.E., Stedman, K.M., and Kustu, S. (1993) Prokaryotic enhancer-binding proteins reflect eukaryote-like modularity: the puzzle of nitrogen regulatory protein C. J Bacteriol 175: 4267-4273.
Park, K.-H., Kim, S., Lee, S.-J., Cho, J.-E., Patil, V.V., Dumbrepatil, A.B., et al. (2020) Tetrameric architecture of an active phenol-bound form of the AAA + transcriptional regulator DmpR. Nat Commun 11: 2728.
Patil, V.V., Park, K.-H., Lee, S.-G., and Woo, E. (2016) Structural analysis of the phenol-responsive sensory domain of the transcription activator PoxR. Struct Lond Engl 1993 24: 624-630.
Pérez-Martin, J., Cases, I., and de Lorenzo, V. (1997) Design of a solubilization pathway for recombinant polypeptides in vivo through processing of a bi-protein with a viral protease. Protein Eng 10: 725-730.
Pérez-Martín, J., and De Lorenzo, V. (1995) The amino-terminal domain of the prokaryotic enhancer-binding protein XylR is a specific intramolecular repressor. Proc Natl Acad Sci U S A 92: 9392-9396.
Pérez-Martín, J., and de Lorenzo, V. (1996) ATP binding to the sigma 54-dependent activator XylR triggers a protein multimerization cycle catalyzed by UAS DNA. Cell 86: 331-339.
Ray, S., Gunzburg, M.J., Wilce, M., Panjikar, S., and Anand, R. (2016) Structural basis of selective aromatic pollutant sensing by the effector binding domain of MopR, an NtrC family transcriptional regulator. ACS Chem Biol 11: 2357-2365.
Ray, S., Panjikar, S., and Anand, R. (2018) Design of protein-based biosensors for selective detection of benzene groups of pollutants. ACS Sens 3: 1632-1638.
Robert, X., and Gouet, P. (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42: W320-W324.
Rogers, G.A., Shaltiel, N., and Boyer, P.D. (1976) Facile alkylation of methionine by benzyl bromide and demonstration of fumarase inactivation accompanied by alkylation of a methionine residue. J Biol Chem 251: 5711-5717.
Salto, R., Delgado, A., Michán, C., Marqués, S., and Ramos, J.L. (1998) Modulation of the function of the signal receptor domain of XylR, a member of a family of prokaryotic enhancer-like positive regulators. J Bacteriol 180: 600-604.
Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory.
Shingler, V. (2003) Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 5: 1226-1241.
Shingler, V., and Moore, T. (1994) Sensing of aromatic compounds by the DmpR transcriptional activator of phenol-catabolizing Pseudomonas sp. strain CF600. J Bacteriol 176: 1555-1560.
Shingler, V., and Pavel, H. (1995) Direct regulation of the ATPase activity of the transcriptional activator DmpR by aromatic compounds. Mol Microbiol 17: 505-513.
Stourac, J., Vavra, O., Kokkonen, P., Filipovic, J., Pinto, G., Brezovsky, J., et al. (2019) Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res 47: W414-W422.
Trott, O., and Olson, A.J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31: 455-461.
Vidgren, J., Svensson, L.A., and Liljas, A. (1994) Crystal structure of catechol O-methyltransferase. Nature 368: 354-358.
Weiss, V., Claverie-Martin, F., and Magasanik, B. (1992) Phosphorylation of nitrogen regulator I of Escherichia coli induces strong cooperative binding to DNA essential for activation of transcription. Proc Natl Acad Sci U S A 89: 5088-5092.
Winson, M.K., Swift, S., Hill, P.J., Sims, C.M., Griesmayr, G., Bycroft, B.W., et al. (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163: 193-202.
Yang, J., and Zhang, Y. (2015) I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res 43: W174-W181.