Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
R01 CA229618
NCI NIH HHS - United States
R01 MH104964
NIMH NIH HHS - United States
4584
Cancer Research UK - United Kingdom
U54 MH118919
NIMH NIH HHS - United States
R01 MH123451
NIMH NIH HHS - United States
G0901310
Medical Research Council - United Kingdom
R01 MH092380
NIMH NIH HHS - United States
PubMed
34099189
PubMed Central
PMC8458480
DOI
10.1016/j.biopsych.2021.02.972
PII: S0006-3223(21)01139-2
Knihovny.cz E-zdroje
- Klíčová slova
- Bipolar disorder, Genome-wide association study, Genotype-by-sex interaction, Major depressive disorder, Schizophrenia, Sex differences,
- MeSH
- bipolární porucha genetika MeSH
- celogenomová asociační studie MeSH
- depresivní porucha unipolární * genetika MeSH
- endoteliální buňky MeSH
- genetická predispozice k nemoci MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- pohlavní dimorfismus * MeSH
- psychotické poruchy * genetika MeSH
- receptory vaskulárního endoteliálního růstového faktoru MeSH
- schizofrenie genetika MeSH
- sulfurtransferasy MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- MOCOS protein, human MeSH Prohlížeč
- receptory vaskulárního endoteliálního růstového faktoru MeSH
- sulfurtransferasy MeSH
BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.
Centre for Addiction and Mental Health Toronto Ontario Canada
Centre for Integrative Sequencing Copenhagen Denmark
Child and Adolescent Psychiatry Erasmus Medical Center Rotterdam the Netherlands
Department of Clinical Neuroscience Max Planck Institute of Experimental Medicine Göttingen Germany
Department of Clinical Sciences Psychiatry Umeå University Medical Faculty Umeå Sweden
Department of Environmental Epidemiology Nofer Institute of Occupational Medicine Lodz Poland
Department of Health Sciences Research Mayo Clinic Rochester Minnesota
Department of Medical and Molecular Genetics King's College London London United Kingdom
Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden
Department of Psychiatry and Psychology Mayo Clinic Rochester Minnesota
Department of Psychiatry and Psychotherapy University Medicine Greifswald Greifswald Germany
Department of Psychiatry Dalhousie University Halifax Nova Scotia Canada
Department of Psychiatry Fujita Health University School of Medicine Toyoake Aichi Japan
Department of Psychiatry University of California San Diego La Jolla California
Department of Psychiatry University of Halle Halle Germany
Department of Psychiatry University of Iowa Iowa City Iowa
Department of Psychiatry Vrije Universiteit Medical Center and GGZ inGeest Amsterdam the Netherlands
Discipline of Psychiatry The University of Adelaide Adelaide South Austrlalia Australia
Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda Maryland
Division of Psychiatry University of Edinburgh Edinburgh United Kingdom
Institute of Community Medicine University Medicine Greifswald Greifswald Germany
Institute of Psychiatric Phenomics and Genomics Munich Germany
Institute of Psychiatric Phenomics and Genomics University Hospital LMU Munich Munich Germany
Institute of Psychiatry King's College London London United Kingdom
Kaiser Permanente Northern California San Francisco California
NIHR Maudsley Biomedical Research Centre King's College London London United Kingdom
Psychiatry and Behavioral Sciences Stanford University Stanford California
Psychiatry and The Behavioral Sciences University of Southern California Los Angeles California
Research Institute Lindner Center of HOPE Mason Ohio
School of Psychiatry University of New South Wales Sydney New South Wales Australia
University of Aberdeen Institute of Medical Sciences Aberdeen United Kingdom
Zobrazit více v PubMed
Salk RH, Hyde JS, Abramson LY (2017): Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychol Bull. 143:783–822. PubMed PMC
Jongsma HE, Turner C, Kirkbride JB, Jones PB (2019): International incidence of psychotic disorders, 2002-17: A systematic review and meta-analysis. Lancet Public Health. 4:e229–e244. PubMed PMC
Diflorio A, Jones I (2010): Is sex important? Gender differences in bipolar disorder. Int Rev Psychiatry. 22:437–452. PubMed
Erol A, Winham SJ, McElroy SL, Frye MA, Prieto ML, Cuellar-Barboza AB, et al. (2015): Sex differences in the risk of rapid cycling and other indicators of adverse illness course in patients with bipolar I and II disorder. Bipolar Disord. 17:670–676. PubMed
Falkenburg J, Tracy DK (2014): Sex and schizophrenia: A review of gender differences. Psychosis. 6:61–69.
Leung A, Chue P (2000): Sex differences in schizophrenia, a review of the literature. Acta Psychiatr Scand Suppl. 401:3–38. PubMed
Schuch JJ, Roest AM, Nolen WA, Penninx BW, de Jonge P (2014): Gender differences in major depressive disorder: Results from the Netherlands study of depression and anxiety. J Affect Disord. 156:156–163. PubMed
Mareckova K, Holsen L, Admon R, Whitfield-Gabrieli S, Seidman LJ, Buka SL, et al. (2017): Neural - hormonal responses to negative affective stimuli: Impact of dysphoric mood and sex. J Affect Disord. 222:88–97. PubMed PMC
Mareckova K, Holsen LM, Admon R, Makris N, Seidman L, Buka S, et al. (2016): Brain activity and connectivity in response to negative affective stimuli: Impact of dysphoric mood and sex across diagnoses. Hum Brain Mapp. 37:3733–3744. PubMed PMC
Polderman TJ, Benyamin B, de Leeuw CA, Sullivan PF, van Bochoven A, Visscher PM, et al. (2015): Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 47:702–709. PubMed
Vink JM, Bartels M, van Beijsterveldt TC, van Dongen J, van Beek JH, Distel MA, et al. (2012): Sex differences in genetic architecture of complex phenotypes? PLoS One. 7:e47371. PubMed PMC
Stringer S, Polderman TJC, Posthuma D (2017): Majority of human traits do not show evidence for sex-specific genetic and environmental effects. Sci Rep. 7:8688. PubMed PMC
Weiss LA, Pan L, Abney M, Ober C (2006): The sex-specific genetic architecture of quantitative traits in humans. Nat Genet. 38:218–222. PubMed
Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AA, Nolte IM, et al. (2015): Genome-wide genetic homogeneity between sexes and populations for human height and body mass index. Hum Mol Genet. 24:7445–7449. PubMed
Goldstein JM, Faraone SV, Chen WJ, Tsuang MT (1995): Genetic heterogeneity may in part explain sex differences in the familial risk for schizophrenia. Biol Psychiatry. 38:808–813. PubMed
Goldstein JM, Cherkerzian S, Tsuang MT, Petryshen TL (2013): Sex differences in the genetic risk for schizophrenia: History of the evidence for sex-specific and sex-dependent effects. Am J Med Genet B Neuropsychiatr Genet. 162B:698–710. PubMed
Goldstein JM (1997): Sex differences in schizophrenia: Epidemiology, genetics and the brain. Int Rev Psychiatr. 9:399–408.
Goldstein JM, Seidman LJ, O'Brien LM, Horton NJ, Kennedy DN, Makris N, et al. (2002): Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Arch Gen Psychiatry. 59:154–164. PubMed
Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, et al. (2016): Schizophrenia risk from complex variation of complement component 4. Nature. 530:177–183. PubMed PMC
Kamitaki N, Sekar A, Handsaker RE, Rivera Hd, Tooley K, Morris DL, et al. (2020): Complement genes contribute sex-biased vulnerability in diverse disorders. Nature. 582:577–581. PubMed PMC
van Loo HM, Aggen SH, Gardner CO, Kendler KS (2018): Sex similarities and differences in risk factors for recurrence of major depression. Psychol Med. 48:1685–1693. PubMed
Bertschy G, Velten M, Weibel S (2016): Major depression: Does gender influence the risk of recurrence? A systematic review. Eur J Psychiat. 30:7–27.
Smith DJ, Nicholl BI, Cullen B, Martin D, Ul-Haq Z, Evans J, et al. (2013): Prevalence and characteristics of probable major depression and bipolar disorder within UK biobank: Cross-sectional study of 172,751 participants. PLoS One. 8:e75362. PubMed PMC
Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM, Amstadter AB, Ashley-Koch AE, et al. (2018): Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol Psychiatry. 23:666–673. PubMed PMC
Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen CY, Choi KW, et al. (2019): International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun. 10:4558. PubMed PMC
Mitra I, Tsang K, Ladd-Acosta C, Croen LA, Aldinger KA, Hendren RL, et al. (2016): Pleiotropic mechanisms indicated for sex differences in autism. PLoS Genet. 12:e1006425. PubMed PMC
Khramtsova EA, Heldman R, Derks EM, Yu D, Tourette Syndrome/Obsessive-Compulsive Disorder Working Group of the Psychiatric Genomics C, Davis LK, et al. (2018): Sex differences in the genetic architecture of obsessive-compulsive disorder. Am J Med Genet B Neuropsychiatr Genet. 180:351–364. PubMed PMC
Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR, et al. (2016): Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet. 48:1031–1036. PubMed PMC
Walters R, Abbott L, Bryant S, Churchhouse C, Palmer D, Neale B (2018): Heritability of >2,000 traits and disorders in the UK Biobank. http://wwwnealelabis/uk-biobank/.
Hübel C, Gaspar HA, Coleman JRI, Finucane H, Purves KL, Hanscombe KB, et al. (2018): Genomics of body fat percentage may contribute to sex bias in anorexia nervosa. Am J Med Genet B Neuropsychiatr Genet. 180:428–438. PubMed PMC
Trzaskowski M, Mehta D, Peyrot WJ, Hawkes D, Davies D, Howard DM, et al. (2019): Quantifying between-cohort and between-sex genetic heterogeneity in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet. 180:439–447. PubMed PMC
Martin J, Walters RK, Demontis D, Mattheisen M, Lee SH, Robinson E, et al. (2018): A genetic investigation of sex bias in the prevalence of attention-deficit/hyperactivity disorder. Biol Psychiatry. 83:1044–1053. PubMed PMC
Rich-Edwards JW, Kaiser UB, Chen GL, Manson JE, Goldstein JM (2018): Sex and gender differences research design for basic, clinical, and population studies: Essentials for investigators. Endocr Rev. 39:424–439. PubMed PMC
Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, et al. (2013): A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. 18:497–511. PubMed PMC
Psychiatric Genomics Consortium Schizophrenia Working Group (2014): Biological insights from 108 schizophrenia-associated genetic loci. Nature. 511:421–427. PubMed PMC
Psychiatric GWAS Consortium Bipolar Disorder Working Group (2011): Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet. 43:977–983. PubMed PMC
Pedersen CB, Bybjerg-Grauholm J, Pedersen MG, Grove J, Agerbo E, Baekvad-Hansen M, et al. (2018): The iPSYCH2012 case-cohort sample: New directions for unravelling genetic and environmental architectures of severe mental disorders. Mol Psychiatry. 23:6–14. PubMed PMC
Lam M, Awasthi S, Watson HJ, Goldstein J, Panagiotaropoulou G, Trubetskoy V, et al. (2020): RICOPILI: Rapid Imputation for COnsortias PIpeLIne. Bioinformatics. 36:930–933. PubMed PMC
Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015): Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience. 4:7. PubMed PMC
Willer CJ, Li Y, Abecasis GR (2010): METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 26:2190–2191. PubMed PMC
Bulik-Sullivan BK, Loh PR, Finucane HK, Ripke S, Yang J, Schizophrenia Working Group of the Psychiatric Genomics Consortium, et al. (2015): LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet. 47:291–295. PubMed PMC
Zheng J, Erzurumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. (2017): LD Hub: A centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics. 33:272–279. PubMed PMC
Keller MC (2014): Gene x environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biol Psychiatry. 75:18–24. PubMed PMC
Bhattacharjee S, Rajaraman P, Jacobs KB, Wheeler WA, Melin BS, Hartge P, et al. (2012): A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am J Hum Genet. 90:821–835. PubMed PMC
Benner C, Spencer CC, Havulinna AS, Salomaa V, Ripatti S, Pirinen M (2016): FINEMAP: Efficient variable selection using summary data from genome-wide association studies. Bioinformatics. 32:1493–1501. PubMed PMC
Hormozdiari F, Kostem E, Kang EY, Pasaniuc B, Eskin E (2014): Identifying causal variants at loci with multiple signals of association. Genetics. 198:497–508. PubMed PMC
de Leeuw CA, Mooij JM, Heskes T, Posthuma D (2015): MAGMA: Generalized gene-set analysis of GWAS data. PLoS computational biology. 11:e1004219. PubMed PMC
Network & Pathway Analysis Subgroup of Psychiatric Genomics Consortium (2015): Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 18:199–209. PubMed PMC
Pardinas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. (2018): Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 50:381–389. PubMed PMC
Gorokhova S, Bibert S, Geering K, Heintz N (2007): A novel family of transmembrane proteins interacting with beta subunits of the Na,K-ATPase. Hum Mol Genet. 16:2394–2410. PubMed
Davies G, Lam M, Harris SE, Trampush JW, Luciano M, Hill WD, et al. (2018): Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun. 9:2098. PubMed PMC
Aberg KA, Liu Y, Bukszar J, McClay JL, Khachane AN, Andreassen OA, et al. (2013): A comprehensive family-based replication study of schizophrenia genes. JAMA Psychiatry. 70:573–581. PubMed PMC
Edwards AC, Bigdeli TB, Docherty AR, Bacanu S, Lee D, de Candia TR, et al. (2016): Meta-analysis of positive and negative symptoms reveals schizophrenia modifier genes. Schizophr Bull. 42:279–287. PubMed PMC
Peltola MA, Kuja-Panula J, Lauri SE, Taira T, Rauvala H (2011): AMIGO is an auxiliary subunit of the Kv2.1 potassium channel. EMBO Rep. 12:1293–1299. PubMed PMC
Bishop HI, Cobb MM, Kirmiz M, Parajuli LK, Mandikian D, Philp AM, et al. (2018): Kv2 ion channels determine the expression and localization of the associated AMIGO-1 cell adhesion molecule in adult brain neurons. Front Mol Neurosci. 11:1. PubMed PMC
Bem J, Brozko N, Chakraborty C, Lipiec MA, Kozinski K, Nagalski A, et al. (2019): Wnt/beta-catenin signaling in brain development and mental disorders: Keeping TCF7L2 in mind. FEBS Lett. 593:1654–1674. PubMed PMC
Hennig KM, Fass DM, Zhao WN, Sheridan SD, Fu T, Erdin S, et al. (2017): WNT/beta-Catenin pathway and epigenetic mechanisms regulate the Pitt-Hopkins syndrome and schizophrenia risk gene TCF4. Mol Neuropsychiatry. 3:53–71. PubMed PMC
Hoseth EZ, Krull F, Dieset I, Morch RH, Hope S, Gardsjord ES, et al. (2018): Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry. 8:55. PubMed PMC
Yu Z, Lin D, Zhong Y, Luo B, Liu S, Fei E, et al. (2019): Transmembrane protein 108 involves in adult neurogenesis in the hippocampal dentate gyrus. Cell Biosci. 9:9. PubMed PMC
He CW, Liao CP, Pan CL (2018): Wnt signalling in the development of axon, dendrites and synapses. Open Biol. 8:180116. PubMed PMC
O’Brien HE, Hannon E, Jeffries AR, Davies W, Hill MJ, Anney RJ, et al. (2018): Sex differences in gene expression in the human fetal brain. bioRxiv. doi: 10.1101/483636. DOI
McClellan KM, Stratton MS, Tobet SA (2010): Roles for gamma-aminobutyric acid in the development of the paraventricular nucleus of the hypothalamus. J Comp Neurol. 518:2710–2728. PubMed PMC
Sellgren CM, Gracias J, Jungholm O, Perlis RH, Engberg G, Schwieler L, et al. (2019): Peripheral and central levels of kynurenic acid in bipolar disorder subjects and healthy controls. Transl Psychiatry. 9:37. PubMed PMC
Nilsson LK, Linderholm KR, Engberg G, Paulson L, Blennow K, Lindstrom LH, et al. (2005): Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res. 80:315–322. PubMed
Miller CL, Llenos IC, Dulay JR, Weis S (2006): Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res. 1073-1074:25–37. PubMed
Sathyasaikumar KV, Stachowski EK, Wonodi I, Roberts RC, Rassoulpour A, McMahon RP, et al. (2011): Impaired kynurenine pathway metabolism in the prefrontal cortex of individuals with schizophrenia. Schizophr Bull. 37:1147–1156. PubMed PMC
Kindler J, Lim CK, Weickert CS, Boerrigter D, Galletly C, Liu D, et al. (2019): Dysregulation of kynurenine metabolism is related to proinflammatory cytokines, attention, and prefrontal cortex volume in schizophrenia. Mol Psychiatry. PubMed PMC
Strasser B, Becker K, Fuchs D, Gostner JM (2017): Kynurenine pathway metabolism and immune activation: Peripheral measurements in psychiatric and co-morbid conditions. Neuropharmacology. 112:286–296. PubMed
Ortona E, Pierdominici M, Rider V (2019): Sex Hormones and Gender Differences in Immune Responses. Front Immunol, pp 186. PubMed PMC
Hochgreb-Hagele T, Koo DE, Bronner ME (2015): Znf385C mediates a novel p53-dependent transcriptional switch to control timing of facial bone formation. Dev Biol. 400:23–32. PubMed
Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. (2019): The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47:D1005–D1012. PubMed PMC
Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, et al. (2017): GeneHancer: Genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017. PubMed PMC
Ziats MN, Rennert OM (2013): Sex-biased gene expression in the developing brain: Implications for autism spectrum disorders. Mol Autism. 4:10. PubMed PMC
Seney ML, Huo Z, Cahill K, French L, Puralewski R, Zhang J, et al. (2018): Opposite molecular signatures of depression in men and women. Biol Psychiatry. 84:18–27. PubMed PMC
Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. (2017): Sex-specific transcriptional signatures in human depression. Nat Med. 23:1102–1111. PubMed PMC
McCarthy MM (2019): Sex differences in neuroimmunity as an inherent risk factor. Neuropsychopharmacology. 44:38–44. PubMed PMC
Wang K, Baldassano R, Zhang H, Qu HQ, Imielinski M, Kugathasan S, et al. (2010): Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Hum Mol Genet. 19:2059–2067. PubMed PMC
Byars SG, Stearns SC, Boomsma JJ (2014): Opposite risk patterns for autism and schizophrenia are associated with normal variation in birth size: Phenotypic support for hypothesized diametric gene-dosage effects. Proc Biol Sci. 281:20140604. PubMed PMC
Crespi B, Badcock C (2008): Psychosis and autism as diametrical disorders of the social brain. Behav Brain Sci. 31:241–261; discussion 261-320. PubMed
Cross-Disorder Group of the Psychiatric Genomics Consortium (2019): Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 179:1469–1482 e1411. PubMed PMC
Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ (2019): Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology. 44:59–70. PubMed PMC
Malamitsi-Puchner A, Tziotis J, Tsonou A, Protonotariou E, Sarandakou A, Creatsas G (2000): Changes in serum levels of vascular endothelial growth factor in males and females throughout life. J Soc Gynecol Investig. 7:309–312. PubMed
Mahoney ER, Dumitrescu L, Moore AM, Cambronero FE, De Jager PL, Koran MEI, et al. (2019): Brain expression of the vascular endothelial growth factor gene family in cognitive aging and alzheimer's disease. Mol Psychiatry. doi: 10.1038/s41380-019-0458-5. PubMed DOI PMC
Frahm KA, Schow MJ, Tobet SA (2012): The vasculature within the paraventricular nucleus of the hypothalamus in mice varies as a function of development, subnuclear location, and GABA signaling. Horm Metab Res. 44:619–624. PubMed
Frahm KA, Handa RJ, Tobet SA (2018): Embryonic exposure to dexamethasone affects nonneuronal cells in the adult paraventricular nucleus of the hypothalamus. J Endocr Soc. 2:140–153. PubMed PMC
Mayne BT, Bianco-Miotto T, Buckberry S, Breen J, Clifton V, Shoubridge C, et al. (2016): Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans. Front Genet. 7:183. PubMed PMC
Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, de Leeuw CA, et al. (2018): Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat Genet. 50:912–919. PubMed PMC
Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. (2018): Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 50:1112–1121. PubMed PMC
Howard DM, Adams MJ, Shirali M, Clarke TK, Marioni RE, Davies G, et al. (2018): Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. Nat Commun. 9:1470. PubMed PMC
Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL, Satija R, et al. (2017): Landscape of X chromosome inactivation across human tissues. Nature. 550:244–248. PubMed PMC
Shi L, Zhang Z, Su B (2016): Sex biased gene expression profiling of human brains at major developmental stages. Sci Rep. 6:21181. PubMed PMC
Lopes-Ramos CM, Chen CY, Kuijjer ML, Paulson JN, Sonawane AR, Fagny M, et al. (2020): Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 31:107795. PubMed PMC
Schizophrenia Working Group of the Psychiatric Genomics Consortium, Ripke S, Walters JTR, O'Donovan MC (2020): Mapping genomic loci prioritises genes and implicates synaptic biology in schizophrenia. medRxiv. doi: 10.1101/2020.09.12.20192922. DOI
Pirastu N, Cordioli M, Nandakumar P, Mignogna G, Abdellaoui A, Hollis B, et al. (2020): Genetic analyses identify widespread sex-differential participation bias. bioRxiv. doi: 10.1101/2020.03.22.001453. PubMed DOI PMC