Guanidine Derivatives: How Simple Structural Modification of Histamine H3R Antagonists Has Led to the Discovery of Potent Muscarinic M2R/M4R Antagonists
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34100603
PubMed Central
PMC8291587
DOI
10.1021/acschemneuro.1c00237
Knihovny.cz E-zdroje
- Klíčová slova
- Antagonists, guanidine derivatives, histamine H3 receptor, muscarinic M2 receptor, muscarinic M4 receptor, structure−activity relationships,
- MeSH
- antagonisté histaminového receptoru H3 * farmakologie MeSH
- antagonisté muskarinových receptorů MeSH
- antihistaminika MeSH
- cholinergní látky MeSH
- guanidiny farmakologie MeSH
- histamin MeSH
- lidé MeSH
- receptory histaminu H3 * MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antagonisté histaminového receptoru H3 * MeSH
- antagonisté muskarinových receptorů MeSH
- antihistaminika MeSH
- cholinergní látky MeSH
- guanidiny MeSH
- histamin MeSH
- receptory histaminu H3 * MeSH
This article describes the discovery of novel potent muscarinic receptor antagonists identified during a search for more active histamine H3 receptor (H3R) ligands. The idea was to replace the flexible seven methylene linker with a semirigid 1,4-cyclohexylene or p-phenylene substituted group of the previously described histamine H3R antagonists ADS1017 and ADS1020. These simple structural modifications of the histamine H3R antagonist led to the emergence of additional pharmacological effects, some of which unexpectedly showed strong antagonist potency at muscarinic receptors. This paper reports the routes of synthesis and pharmacological characterization of guanidine derivatives, a novel chemotype of muscarinic receptor antagonists binding to the human muscarinic M2 and M4 receptors (hM2R and hM4R, respectively) in nanomolar concentration ranges. The affinities of the newly synthesized ADS10227 (1-{4-{4-{[4-(phenoxymethyl)cyclohexyl]methyl}piperazin-1-yl}but-1-yl}-1-(benzyl)guanidine) at hM2R and hM4R were 2.8 nM and 5.1 nM, respectively.
Zobrazit více v PubMed
Prast H.; Tran M. H.; Lamberti C.; Fischer H.; Kraus M.; Grass K.; Philippu A. (1999) Histaminergic Neurons Modulate Acetylcholine Release in the Ventral Striatum: Role of H1 and H2 Histamine Receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 360 (5), 552–557. 10.1007/s002109900098. PubMed DOI
Hey J., and Aslanian R.. Use of Dual H3/M2 Antagonists in the Treatment of Cognition Deficit Disorders. U.S. Patent 6906081B2, June 14, 2005.
Passani M. B.; Cangioli I.; Baldi E.; Bucherelli C.; Mannaioni P. F.; Blandina P. (2001) Histamine H3 Receptor-Mediated Impairment of Contextual Fear Conditioning and in-Vivo Inhibition of Cholinergic Transmission in the Rat Basolateral Amygdala. Eur. J. Neurosci. 14 (9), 1522–1532. 10.1046/j.0953-816x.2001.01780.x. PubMed DOI
Bacciottini L.; Passani M. B.; Giovannelli L.; Cangioli I.; Mannaioni P. F.; Schunack W.; Blandina P. (2002) Endogenous Histamine in the Medial Septum-Diagonal Band Complex Increases the Release of Acetylcholine from the Hippocampus: A Dual-Probe Microdialysis Study in the Freely Moving Rat. Eur. J. Neurosci. 15 (10), 1669–1680. 10.1046/j.1460-9568.2002.02005.x. PubMed DOI
Blandina P.; Giorgetti M.; Bartolini L.; Cecchi M.; Timmerman H.; Leurs R.; Pepeu G.; Giovannini M. G. (1996) Inhibition of Cortical Acetylcholine Release and Cognitive Performance by Histamine H3 Receptor Activation in Rats. Br. J. Pharmacol. 119 (8), 1656–1664. 10.1111/j.1476-5381.1996.tb16086.x. PubMed DOI PMC
Blandina P.; Giorgetti M.; Cecchi M.; Leurs R.; Timmerman H.; Giovannini M. G. (1996) Histamine H3 Receptor Inhibition of K+-Evoked Release of Acetylcholine from Rat Cortex in Vivo. Inflammation Res. 45, S54–S55. 10.1007/BF03354086. PubMed DOI
Eglen R. M.Muscarinic Receptor Subtype Pharmacology and Physiology. (2005) In Progress in Medicinal Chemistry (King F. D., and Lawton G., Eds.) 1st ed., pp 105–136, Elsevier Science, Amsterdam. PubMed
Felder C. C.; Bymaster F. P.; Ward J.; DeLapp N. (2000) Therapeutic Opportunities for Muscarinic Receptors in the Central Nervous System. J. Med. Chem. 43, 4333–4353. 10.1021/jm990607u. PubMed DOI
Langmead C. J.; Watson J.; Reavill C. (2008) Muscarinic Acetylcholine Receptors as CNS Drug Targets. Pharmacol. Ther. 117, 232–243. 10.1016/j.pharmthera.2007.09.009. PubMed DOI
Wess J.; Eglen R. M.; Gautam D. (2007) Muscarinic Acetylcholine Receptors: Mutant Mice Provide New Insights for Drug Development. Nat. Rev. Drug Discovery 6 (9), 721–733. 10.1038/nrd2379. PubMed DOI
Trzeciakowski J. P. (1987) Inhibition of Guinea Pig Ileum Contractions Mediated by a Class of Histamine Receptor Resembling the H3 Subtype. J. Pharmacol. Exp. Ther. 243 (3), 874–880. PubMed
Poli E.; Coruzzi G.; Bertaccini G. (1991) Histamine H3 Receptors Regulate Acetylcholine Release from the Guinea Pig Ileum Myenteric Plexus. Life Sci. 48 (13), PL63–PL68. 10.1016/0024-3205(91)90531-F. PubMed DOI
Nieto-Alamilla G.; Márquez-Gómez R.; García-Gálvez A. M.; Morales-Figueroa G. E.; Arias-Montaño J. A. (2016) The Histamine H3 Receptor: Structure, Pharmacology, and Function. Mol. Pharmacol. 90 (5), 649–673. 10.1124/mol.116.104752. PubMed DOI
Eglen R. M. (2012) Overview of Muscarinic Receptor Subtypes. Handb. Exp. Pharmacol. 208, 3–28. 10.1007/978-3-642-23274-9_1. PubMed DOI
Lachowicz J. E.; Duffy R. A.; Ruperto V.; Kozlowski J.; Zhou G.; Clader J.; Billard W.; Binch H.; Crosby G.; Cohen-Williams M.; Strader C. D.; Coffin V. (2001) Facilitation of Acetylcholine Release and Improvement in Cognition by a Selective M 2 Muscarinic Antagonist, SCH 72788. Life Sci. 68 (22–23), 2585–2592. 10.1016/S0024-3205(01)01056-6. PubMed DOI
Greenlee W.; Clader J.; Asberom T.; McCombie S.; Ford J.; Guzik H.; Kozlowski J.; Li S.; Liu C.; Lowe D.; Vice S.; Zhao H.; Zhou G.; Billard W.; Binch H.; Crosby R.; Duffy R.; Lachowicz J.; Coffin V.; Watkins R.; Ruperto V.; Strader C.; Taylor L.; Cox K. (2001) Muscarinic Agonists and Antagonists in the Treatment of Alzheimer’s Disease. Farmaco 56 (4), 247–250. 10.1016/S0014-827X(01)01102-8. PubMed DOI
Bartus R., Dean R., and Flicker C. (1987) Psychopharmacology: The Third Generation of Progress (Meltzer H. Y., Ed.) Raven Press, New York.
Alcantara A. A.; Mrzljak L.; Jakab R. L.; Levey A. I.; Hersch S. M.; Goldman-Rakic P. S. (2001) Muscarinic M1 and M2 Receptor Proteins in Local Circuit and Projection Neurons of the Primate Striatum: Anatomical Evidence for Cholinergic Modulation of Glutamatergic Prefronto-Striatal Pathways. J. Comp. Neurol. 434 (4), 445–460. 10.1002/cne.1186. PubMed DOI
Rouse S. T.; Edmunds S. M.; Yi H.; Gilmor M. L.; Levey A. I. (2000) Localization of M2Muscarinic Acetylcholine Receptor Protein in Cholinergic and Non-Cholinergic Terminals in Rat Hippocampus. Neurosci. Lett. 284 (3), 182–186. 10.1016/S0304-3940(00)01011-9. PubMed DOI
Louilot A.; Le Moal M.; Simon H. (1986) Differential Reactivity of Dopaminergic Neurons in the Nucleus Accumbens in Response to Different Behavioral Situations. An in Vivo Voltammetric Study in Free Moving Rats. Brain Res. 397 (2), 395–400. 10.1016/0006-8993(86)90646-3. PubMed DOI
Klein J. T.; Platt M. L. (2013) Social Information Signaling by Neurons in Primate Striatum. Curr. Biol. 23 (8), 691–696. 10.1016/j.cub.2013.03.022. PubMed DOI PMC
Van Kerkhof L. W.; Damsteegt R.; Trezza V.; Voorn P.; Vanderschuren L. J. (2013) Social Play Behavior in Adolescent Rats Is Mediated by Functional Activity in Medial Prefrontal Cortex and Striatum. Neuropsychopharmacology 38 (10), 1899–1909. 10.1038/npp.2013.83. PubMed DOI PMC
Croy C. H.; Chan W. Y.; Castetter A. M.; Watt M. L.; Quets A. T.; Felder C. C. (2016) Characterization of PCS1055, a Novel Muscarinic M4 Receptor Antagonist. Eur. J. Pharmacol. 782, 70–76. 10.1016/j.ejphar.2016.04.022. PubMed DOI
Brichta L.; Greengard P.; Flajolet M. (2013) Advances in the Pharmacological Treatment of Parkinson’s Disease: Targeting Neurotransmitter Systems. Trends Neurosci. 36 (9), 543–554. 10.1016/j.tins.2013.06.003. PubMed DOI
Ravhe I. S.; Krishnan A.; Manoj N. (2021) Evolutionary History of Histamine Receptors: Early Vertebrate Origin and Expansion of the H3-H4 Subtypes. Mol. Phylogenet. Evol. 154, 106989.10.1016/j.ympev.2020.106989. PubMed DOI
Pándy-Szekeres G.; Munk C.; Tsonkov T. M.; Mordalski S.; Harpsøe K.; Hauser A. S.; Bojarski A. J.; Gloriam D. E. (2018) GPCRdb in 2018: Adding GPCR Structure Models and Ligands. Nucleic Acids Res. 46 (D1), D440–D446. 10.1093/nar/gkx1109. PubMed DOI PMC
Vass M.; Podlewska S.; De Esch I. J. P.; Bojarski A. J.; Leurs R.; Kooistra A. J.; De Graaf C. (2019) Aminergic GPCR-Ligand Interactions: A Chemical and Structural Map of Receptor Mutation Data. J. Med. Chem. 62 (8), 3784–3839. 10.1021/acs.jmedchem.8b00836. PubMed DOI
Jończyk J.; Malawska B.; Bajda M. (2017) Hybrid Approach to Structure Modeling of the Histamine H3 Receptor: Multi-Level Assessment as a Tool for Model Verification. PLoS One 12 (10), e018610810.1371/journal.pone.0186108. PubMed DOI PMC
Heitz F.; Holzwarth J. A.; Gies J. P.; Pruss R. M.; Trumpp-Kallmeyer S.; Hibert M. F.; Guenet C. (1999) Site-Directed Mutagenesis of the Putative Human Muscarinic M2 Receptor Binding Site. Eur. J. Pharmacol. 380 (2–3), 183–195. 10.1016/S0014-2999(99)00439-2. PubMed DOI
Tautermann C. S.; Kiechle T.; Seeliger D.; Diehl S.; Wex E.; Banholzer R.; Gantner F.; Pieper M. P.; Casarosa P. (2013) Molecular Basis for the Long Duration of Action and Kinetic Selectivity of Tiotropium for the Muscarinic M3 Receptor. J. Med. Chem. 56 (21), 8746–8756. 10.1021/jm401219y. PubMed DOI
Staszewski M.; Stasiak A.; Karcz T.; McNaught Flores D.; Fogel W. A.; Kieć-Kononowicz K.; Leurs R.; Walczyński K. (2019) Design, Synthesis, and: In Vitro and in Vivo Characterization of 1-{4-[4-(Substituted)Piperazin-1-Yl]Butyl}guanidines and Their Piperidine Analogues as Histamine H3 Receptor Antagonists. MedChemComm 10 (2), 234–251. 10.1039/C8MD00527C. PubMed DOI PMC
Staszewski M.; Walczyński K. (2012) Synthesis and Preliminary Pharmacological Investigation of New N-Substituted-N-[ω-(ω-Phenoxy-Alkylpiperazin-1-Yl)Alkyl]Guanidines as Non-Imidazole Histamine H3 Antagonists. Arch. Pharm. (Weinheim, Ger.) 345 (6), 431–443. 10.1002/ardp.201100428. PubMed DOI
Dvorak C. A.; Apodaca R.; Barbier A. J.; Berridge C. W.; Wilson S. J.; Boggs J. D.; Xiao W.; Lovenberg T. W.; Carruthers N. I. (2005) 4-Phenoxypiperidines: Potent, Conformationally Restricted, Non-Imidazole Histamine H3 Antagonists. J. Med. Chem. 48 (6), 2229–2238. 10.1021/jm049212n. PubMed DOI
Olszewska B.; Stasiak A.; Flores D. M. N.; Fogel W. A.; Leurs R.; Walczyński K. (2018) 4-Hydroxypiperidines and Their Flexible 3-(Amino)Propyloxy Analogues as Non-Imidazole Histamine H3 Receptor Antagonist: Further Structure-Activity Relationship Exploration and in Vitro and in Vivo Pharmacological Evaluation. Int. J. Mol. Sci. 19 (4), 1243–1261. 10.3390/ijms19041243. PubMed DOI PMC
Vollinga R. C.; Zuiderveld O. P.; Scheerens H.; Bast A.; Timmerman H. (1992) A Simple and Rapid in Vitro Test System for the Screening of Histamine H3 Ligands. Methods Find. Exp. Clin. Pharmacol. 14, 747–751. PubMed
Kenakin T. (2018) A Pharmacology Primer: Techniques for More Effective and Strategic Drug Design, 4th ed., pp 66–83, Academic Press, London.
Arunlakshana O.; Schild H. O. (1959) Some Quantitative Uses Of Drug Antagonists. Br. J. Pharmacol. Chemother. 14 (1), 48–58. 10.1111/j.1476-5381.1959.tb00928.x. PubMed DOI PMC
Unno T.; Kwon S.-C.; Okamoto H.; Irie Y.; Kato Y.; Matsuyama H.; Komori S. (2003) Receptor Signaling Mechanisms Underlying Muscarinic Agonist-Evoked Contraction in Guinea-Pig Ileal Longitudinal Smooth Muscle. Br. J. Pharmacol. 139 (2), 337–350. 10.1038/sj.bjp.0705267. PubMed DOI PMC
El-Fakahany Esam E., and Jakubik J.. Radioligand Binding at Muscarinic Receptors. (2016) In Muscarinic Receptor: From Structure to Animal Models, pp 37–68, Humana Press: New York.
Friesner R. A.; Banks J. L.; Murphy R. B.; Halgren T. A.; Klicic J. J.; Mainz D. T.; Repasky M. P.; Knoll E. H.; Shelley M.; Perry J. K.; Shaw D. E.; Francis P.; Shenkin P. S. (2004) Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 47 (7), 1739–1749. 10.1021/jm0306430. PubMed DOI
Ji Y., Husfeld C., Mu Y., Lee R., and Li L.. Guanidine-Containing Compounds Useful as Muscarinic Receptor Antagonists. Patent US2009069335A1, March 12, 2009.
Linney I. D.; Buck I. M.; Harper E. A.; Kalindjian S. B.; Pether M. J.; Shankley N. P.; Watt G. F.; Wright P. T. (2000) Design, Synthesis, and Structure-Activity Relationships of Novel Non- Imidazole Histamine H3 Receptor Antagonists. J. Med. Chem. 43 (12), 2362–2370. 10.1021/jm990952j. PubMed DOI
Kottke T.; Sander K.; Weizel L.; Schneider E. H.; Seifert R.; Stark H. (2011) Receptor-Specific Functional Efficacies of Alkyl Imidazoles as Dual Histamine H3/H4 Receptor Ligands. Eur. J. Pharmacol. 654 (3), 200–208. 10.1016/j.ejphar.2010.12.033. PubMed DOI
Yung-Chi C.; Prusoff W. H. (1973) Relationship between the Inhibition Constant (KI) and the Concentration of Inhibitor Which Causes 50 per Cent Inhibition (I50) of an Enzymatic Reaction. Biochem. Pharmacol. 22 (23), 3099–3108. 10.1016/0006-2952(73)90196-2. PubMed DOI
Boulos J. F.; Jakubik J.; Boulos J. M.; Randakova A.; Momirov J. (2018) Synthesis of Novel and Functionally Selective Non-Competitive Muscarinic Antagonists as Chemical Probes. Chem. Biol. Drug Des. 91 (1), 93–104. 10.1111/cbdd.13059. PubMed DOI
Friesner R. A.; Murphy R. B.; Repasky M. P.; Frye L. L.; Greenwood J. R.; Halgren T. A.; Sanschagrin P. C.; Mainz D. T. (2006) Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. J. Med. Chem. 49 (21), 6177–6196. 10.1021/jm051256o. PubMed DOI
Suno R.; Lee S.; Maeda S.; Yasuda S.; Yamashita K.; Hirata K.; Horita S.; Tawaramoto M. S.; Tsujimoto H.; Murata T.; Kinoshita M.; Yamamoto M.; Kobilka B. K.; Vaidehi N.; Iwata S.; Kobayashi T. (2018) Structural Insights into the Subtype-Selective Antagonist Binding to the M2Muscarinic Receptor. Nat. Chem. Biol. 14 (12), 1150–1158. 10.1038/s41589-018-0152-y. PubMed DOI PMC
Thal D. M.; Sun B.; Feng D.; Nawaratne V.; Leach K.; Felder C. C.; Bures M. G.; Evans D. A.; Weis W. I.; Bachhawat P.; Kobilka T. S.; Sexton P. M.; Kobilka B. K.; Christopoulos A. (2016) Crystal Structures of the M1 and M4Muscarinic Acetylcholine Receptors. Nature 531 (7594), 335–340. 10.1038/nature17188. PubMed DOI PMC
Martínez-Rosell G.; Giorgino T.; De Fabritiis G. (2017) PlayMolecule ProteinPrepare: A Web Application for Protein Preparation for Molecular Dynamics Simulations. J. Chem. Inf. Model. 57 (7), 1511–1516. 10.1021/acs.jcim.7b00190. PubMed DOI