Ultra-small cobalt nanoparticles from molecularly-defined Co-salen complexes for catalytic synthesis of amines
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34122798
PubMed Central
PMC8157512
DOI
10.1039/c9sc04963k
PII: c9sc04963k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt-salen complexes such as cobalt(ii)-N,N'-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2-4 nm) cobalt-nanoparticles embedded in a carbon-nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia. The isolated nanoparticles also represent excellent catalysts for the synthesis of primary, secondary as well as tertiary amines including biologically relevant N-methyl amines.
Zobrazit více v PubMed
Wang D. Astruc D. Chem. Soc. Rev. 2017;46:816–854. doi: 10.1039/C6CS00629A. PubMed DOI
Liu L. Corma A. Chem. Rev. 2018;8:4981–5079. doi: 10.1021/acs.chemrev.7b00776. PubMed DOI PMC
Cui X. Dai X. Deng Y. Shi F. Chem.–Eur. J. 2013;19:3665–3675. doi: 10.1002/chem.201203417. PubMed DOI
Jagadeesh R. V. Surkus A.-E. Junge H. Pohl M.-M. Radnik J. Rabeah J. Huan H. Schünemann V. Brückner A. Beller M. Science. 2013;342:1073–1076. doi: 10.1126/science.1242005. PubMed DOI
Jagadeesh R. V. Murugesan K. Alshammari A. S. Neumann H. Pohl M.-M. Radnik J. Beller M. Science. 2017;358:326–332. doi: 10.1126/science.aan6245. PubMed DOI
He L. Weniger F. Neumann H. Beller M. Angew. Chem., Int. Ed. 2016;55:12582–12594. doi: 10.1002/anie.201603198. PubMed DOI
Schwob T. Kempe R. Angew. Chem., Int. Ed. 2016;55:15175–15179. doi: 10.1002/anie.201608321. PubMed DOI
Hahn G. Kunnas P. de Jonge N. Kempe R. Nat. Catal. 2018;2:71–77. doi: 10.1038/s41929-018-0202-6. DOI
Murugesan K. Beller M. Jagadeesh R. V. Angew. Chem., Int. Ed. 2019;58:5064–5068. doi: 10.1002/anie.201812100. PubMed DOI
Murugesan K. Senthamarai T. Alshammari A. S. Altamimi R. M. Kreyenschulte C. Pohl M.-M. Lund H. Jagadeesh R. V. Beller M. ACS Catal. 2019;9:8581–8591. doi: 10.1021/acscatal.9b02193. DOI
Jagadeesh R. V. Stemmler T. Surkus A.-E. Bauer M. Pohl M.-M. Radnik J. Junge K. Junge H. Brückner A. Beller M. Nat. Protoc. 2015;10:916–926. doi: 10.1038/nprot.2015.049. PubMed DOI
Schwob T. Kunnas P. de Jonge N. Papp C. Steinrück H. P. Kempe R. Sci. Adv. 2019;5:eaav3680. doi: 10.1126/sciadv.aav3680. PubMed DOI PMC
Schwob T. Ade M. Kempe R. ChemSusChem. 2019;12:3013–3017. doi: 10.1002/cssc.201900498. PubMed DOI
Parshall G. W. and Ittel S. D., Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes, Weily, 1992
van Leeuwen P. W. N. M. and Chadwick J. C., Homogeneous Catalysts: Activity – Stability – Deactivation, Wiley-VCH, 2011
Cornils B., Herrmann W. A., Beller M. and Paciello R., Applied Homogeneous Catalysis with Organometallic Compounds, Wiley-VCH, 2017
Averill B. A., Moulijn J. A., van Santen R. A. and van Leeuwen P. W. N. M., Catalysis: An integrated approach, Elsevier, 1997
Filipponi L. and Sutherland D., Nanotechnologies: Principles, Applications, Implications and Hands-on Activities, European Commission, European Union, 2012
Gawande M. B. Branco S. P. Varma R. S. Chem. Soc. Rev. 2013;42:3371–3393. doi: 10.1039/C3CS35480F. PubMed DOI
Gawande M. B. Goswami A. Asefa T. Guo H. Biradar A. V. Peng D. L. Zboril R. Varma R. S. Chem. Soc. Rev. 2015;44:7540–7590. doi: 10.1039/C5CS00343A. PubMed DOI
Munnik P. De Jongh P. E. De Jong K. P. Chem. Rev. 2015;115:6687–6718. doi: 10.1021/cr500486u. PubMed DOI
Sankar M. Dimitratos N. Miedziak P. J. Wells P. P. Kielye C. J. Hutchings G. J. Chem. Soc. Rev. 2012;41:8099–8139. doi: 10.1039/C2CS35296F. PubMed DOI
Tao F., Metal Nanoparticles for Catalysis: Advances and Applications, Royal Society of Chemistry, 2014
van Schrojenstein Lantman E. M. Deckert-Gaudig T. Mank A. J. G. Deckert V. Weckhuysen B. M. Nat. Nanotechnol. 2012;7:583–586. doi: 10.1038/nnano.2012.131. PubMed DOI
Sattler J. J. H. B. Ruiz-Martinez J. Santillan-Jimenez E. Weckhuysen B. M. Chem. Rev. 2014;114:10613–10653. doi: 10.1021/cr5002436. PubMed DOI
Balanta A. Godard C. Claver C. Chem. Soc. Rev. 2011;40:4973–4985. doi: 10.1039/C1CS15195A. PubMed DOI
Dang S. Zhu Q.-L. Xu Q. Nat. Rev. Mater. 2017;3:17075. doi: 10.1038/natrevmats.2017.75. DOI
Tang J. Yamauchi Y. Nat. Chem. 2016;8:638–639. doi: 10.1038/nchem.2548. PubMed DOI
Shen K. Chen X. Chen J. Li Y. ACS Catal. 2016;6:5887–5903. doi: 10.1021/acscatal.6b01222. DOI
Yan N. Yuan Y. Dyson P. J. Dalton Trans. 2013;42:13294–13304. doi: 10.1039/C3DT51180D. PubMed DOI
Cantillo Da. Baghbanzadeh M. Kappe C. O. Angew. Chem., Int. Ed. 2012;51:10190–10193. doi: 10.1002/anie.201205792. PubMed DOI
Holz J. Pfeffer C. Zuo H. Beierlein D. Richter G. Klemm E. Peters R. Angew. Chem., Int. Ed. 2019;58:10330–10334. doi: 10.1002/anie.201902352. PubMed DOI
Zadoina L. Soulantica K. Ferrere S. Lonetti B. Respaud M. Mingotaud A. F. Falqui A. Genovese A. Chaudret B. Mauzac M. J. Mater. Chem. 2011;21:6988–6994. doi: 10.1039/C0JM03872E. DOI
Ricci A., Amino group chemistry: From synthesis to the life sciences, Wiley-VCH, 2008
Top 200 drugs production, National Science Foundation, J Chem. Educ., 2010, 87, 1348
Lawrence S. A., Amines: synthesis, properties and applications, Cambridge University Press, 2004
Shi F. and Cui X., Catalytic amination for N-alkyl amine synthesis, Academic Press, 2018
Meindl W. R. Angerer E. V. Schoenenberger H. Ruckdeschel G. Med. Chem. 1984;27:1111–1118. doi: 10.1021/jm00375a005. PubMed DOI
Froidevaux V. Negrell C. Caillol S. Pascault J.-P. Boutevin B. Chem. Rev. 2016;116:14181–14224. doi: 10.1021/acs.chemrev.6b00486. PubMed DOI
Yan T. Feringa B. L. Barta K. Nat. Commun. 2014;5:5602. doi: 10.1038/ncomms6602. PubMed DOI
Gomez S. Peters J. A. Maschmeyer T. Adv. Synth. Catal. 2002;344:1037–1057. doi: 10.1002/1615-4169(200212)344:10<1037::AID-ADSC1037>3.0.CO;2-3. DOI
Alinezhad H. Yavari H. Salehian F. Curr. Org. Chem. 2015;19:1021–1049. doi: 10.2174/1385272819666150311233021. DOI
Nugenta T. C. El-Shazlya M. Adv. Synth. Catal. 2010;352:753–819. doi: 10.1002/adsc.200900719. DOI
Natte K. Neumann H. Jagadeesh R. V. Beller M. Nat. Commun. 2017;8:1344. doi: 10.1038/s41467-017-01428-0. PubMed DOI PMC
https://reagentguides.com/reagent-guides/reductive-amination/list-of-reagents/hydrogen-metal-catalysts-precious-and-base-metal https://reagentguides.com/reagent-guides/reductive-amination/list-of-reagents/hydrogen-metal-catalysts-precious-and-base-metal
Gusak K. N. Ignatovich Z. V. Koroleva E. V. Russ. Chem. Rev. 2015;84:288–309. doi: 10.1070/RCR4443. DOI
Nakamura Y. Kon K. Touchy A. S. Shimizu K.-I. Ueda W. ChemCatChem. 2015;7:921–924. doi: 10.1002/cctc.201402996. DOI
Liang G. Wang A. Li L. Xu G. Yan N. Zhang T. Angew. Chem., Int. Ed. 2017;56:3050–3054. doi: 10.1002/anie.201610964. PubMed DOI
Komanoya T. Kinemura T. Kita Y. Kamata Y. K. Hara M. J. Am. Chem. Soc. 2017;139:11493–11499. doi: 10.1021/jacs.7b04481. PubMed DOI
Chatterjee M. Ishizakaa T. Kawanami H. Green Chem. 2016;18:487–496. doi: 10.1039/C5GC01352F. DOI
Gross T. Seayad A. M. Ahmad M. Beller M. Org. Lett. 2002;4:2055–2058. doi: 10.1021/ol0200605. PubMed DOI
Riermeier T., Haack K.-J., Dingerdissen U., Börner A., Tararov V. and Kadyrov R.,
Gallardo-Donaire J. Ernst M. Trapp O. Schaub T. Adv. Synth. Catal. 2016;358:358–363. doi: 10.1002/adsc.201500968. DOI
Gallardo-Donaire J. Wysocki M. H. Ernst M. Rominger F. Trapp O. Stephen A. Hashmi L. Schaefer A. Comba P. Schaub T. J. Am. Chem. Soc. 2018;140:355–361. doi: 10.1021/jacs.7b10496. PubMed DOI
Ogo S. Uehara K. Abura T. Fukuzumi S. J. Am. Chem. Soc. 2014;126:3020–3021. doi: 10.1021/ja031633r. PubMed DOI
Kadyrov R. Riermeier T. H. Angew. Chem., Int. Ed. 2003;42:5472–5474. doi: 10.1002/anie.200352503. PubMed DOI
Senthamarai T. Murugesan K. Schneidewind J. Kalevaru N. V. Baumann W. Neumann H. Kamer P. C. J. Beller M. Jagadeesh R. V. Nat. Commun. 2018;9:4123. doi: 10.1038/s41467-018-06416-6. PubMed DOI PMC
Tan X. Gao S. Zeng W. Xin S. Yin Q. Zhang X. J. Am. Chem. Soc. 2018;140:2024–2027. doi: 10.1021/jacs.7b12898. PubMed DOI
Wang Z., “Mignonac reaction” in comprehensive organic name reactions and reagents, Wiley, 2010
https://erowid.org/archive/rhodium/chemistry/reductive.amination.html, 2004
Zola A. S. Ribeiro R. U. Bueno J. M. C. Zanchet D. Arroyo P. A. J. Exp. Nanosci. 2014;9:398–405. doi: 10.1080/17458080.2012.662723. DOI
Yang J. Liu H. Martens W. N. Frost R. L. J. Phys. Chem. 2010;114:111–119.
Wagner C. D., Davis L. E., Moulder J. F. and Mullenberg G. E., Handbook of X-ray Photoelectron Spectroscopy, Minnesota: Perkin-Elmer Corporation, 1978
Khandar A. A. Shaabani B. Belaj F. Bakhtiari A. Inorg. Chim. Acta. 2007;360:3255–3264. doi: 10.1016/j.ica.2007.03.036. DOI
van Den Bergen A. Murray K. S. West B. O. J. Organomet. Chem. 1971;33:89–96. doi: 10.1016/S0022-328X(00)80806-2. DOI