Ultra-small cobalt nanoparticles from molecularly-defined Co-salen complexes for catalytic synthesis of amines

. 2020 Feb 21 ; 11 (11) : 2973-2981. [epub] 20200221

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34122798

We report the synthesis of in situ generated cobalt nanoparticles from molecularly defined complexes as efficient and selective catalysts for reductive amination reactions. In the presence of ammonia and hydrogen, cobalt-salen complexes such as cobalt(ii)-N,N'-bis(salicylidene)-1,2-phenylenediamine produce ultra-small (2-4 nm) cobalt-nanoparticles embedded in a carbon-nitrogen framework. The resulting materials constitute stable, reusable and magnetically separable catalysts, which enable the synthesis of linear and branched benzylic, heterocyclic and aliphatic primary amines from carbonyl compounds and ammonia. The isolated nanoparticles also represent excellent catalysts for the synthesis of primary, secondary as well as tertiary amines including biologically relevant N-methyl amines.

Zobrazit více v PubMed

Wang D. Astruc D. Chem. Soc. Rev. 2017;46:816–854. doi: 10.1039/C6CS00629A. PubMed DOI

Liu L. Corma A. Chem. Rev. 2018;8:4981–5079. doi: 10.1021/acs.chemrev.7b00776. PubMed DOI PMC

Cui X. Dai X. Deng Y. Shi F. Chem.–Eur. J. 2013;19:3665–3675. doi: 10.1002/chem.201203417. PubMed DOI

Jagadeesh R. V. Surkus A.-E. Junge H. Pohl M.-M. Radnik J. Rabeah J. Huan H. Schünemann V. Brückner A. Beller M. Science. 2013;342:1073–1076. doi: 10.1126/science.1242005. PubMed DOI

Jagadeesh R. V. Murugesan K. Alshammari A. S. Neumann H. Pohl M.-M. Radnik J. Beller M. Science. 2017;358:326–332. doi: 10.1126/science.aan6245. PubMed DOI

He L. Weniger F. Neumann H. Beller M. Angew. Chem., Int. Ed. 2016;55:12582–12594. doi: 10.1002/anie.201603198. PubMed DOI

Schwob T. Kempe R. Angew. Chem., Int. Ed. 2016;55:15175–15179. doi: 10.1002/anie.201608321. PubMed DOI

Hahn G. Kunnas P. de Jonge N. Kempe R. Nat. Catal. 2018;2:71–77. doi: 10.1038/s41929-018-0202-6. DOI

Murugesan K. Beller M. Jagadeesh R. V. Angew. Chem., Int. Ed. 2019;58:5064–5068. doi: 10.1002/anie.201812100. PubMed DOI

Murugesan K. Senthamarai T. Alshammari A. S. Altamimi R. M. Kreyenschulte C. Pohl M.-M. Lund H. Jagadeesh R. V. Beller M. ACS Catal. 2019;9:8581–8591. doi: 10.1021/acscatal.9b02193. DOI

Jagadeesh R. V. Stemmler T. Surkus A.-E. Bauer M. Pohl M.-M. Radnik J. Junge K. Junge H. Brückner A. Beller M. Nat. Protoc. 2015;10:916–926. doi: 10.1038/nprot.2015.049. PubMed DOI

Schwob T. Kunnas P. de Jonge N. Papp C. Steinrück H. P. Kempe R. Sci. Adv. 2019;5:eaav3680. doi: 10.1126/sciadv.aav3680. PubMed DOI PMC

Schwob T. Ade M. Kempe R. ChemSusChem. 2019;12:3013–3017. doi: 10.1002/cssc.201900498. PubMed DOI

Parshall G. W. and Ittel S. D., Homogeneous Catalysis: The Applications and Chemistry of Catalysis by Soluble Transition Metal Complexes, Weily, 1992

van Leeuwen P. W. N. M. and Chadwick J. C., Homogeneous Catalysts: Activity – Stability – Deactivation, Wiley-VCH, 2011

Cornils B., Herrmann W. A., Beller M. and Paciello R., Applied Homogeneous Catalysis with Organometallic Compounds, Wiley-VCH, 2017

Averill B. A., Moulijn J. A., van Santen R. A. and van Leeuwen P. W. N. M., Catalysis: An integrated approach, Elsevier, 1997

Filipponi L. and Sutherland D., Nanotechnologies: Principles, Applications, Implications and Hands-on Activities, European Commission, European Union, 2012

Gawande M. B. Branco S. P. Varma R. S. Chem. Soc. Rev. 2013;42:3371–3393. doi: 10.1039/C3CS35480F. PubMed DOI

Gawande M. B. Goswami A. Asefa T. Guo H. Biradar A. V. Peng D. L. Zboril R. Varma R. S. Chem. Soc. Rev. 2015;44:7540–7590. doi: 10.1039/C5CS00343A. PubMed DOI

Munnik P. De Jongh P. E. De Jong K. P. Chem. Rev. 2015;115:6687–6718. doi: 10.1021/cr500486u. PubMed DOI

Sankar M. Dimitratos N. Miedziak P. J. Wells P. P. Kielye C. J. Hutchings G. J. Chem. Soc. Rev. 2012;41:8099–8139. doi: 10.1039/C2CS35296F. PubMed DOI

Tao F., Metal Nanoparticles for Catalysis: Advances and Applications, Royal Society of Chemistry, 2014

van Schrojenstein Lantman E. M. Deckert-Gaudig T. Mank A. J. G. Deckert V. Weckhuysen B. M. Nat. Nanotechnol. 2012;7:583–586. doi: 10.1038/nnano.2012.131. PubMed DOI

Sattler J. J. H. B. Ruiz-Martinez J. Santillan-Jimenez E. Weckhuysen B. M. Chem. Rev. 2014;114:10613–10653. doi: 10.1021/cr5002436. PubMed DOI

Balanta A. Godard C. Claver C. Chem. Soc. Rev. 2011;40:4973–4985. doi: 10.1039/C1CS15195A. PubMed DOI

Dang S. Zhu Q.-L. Xu Q. Nat. Rev. Mater. 2017;3:17075. doi: 10.1038/natrevmats.2017.75. DOI

Tang J. Yamauchi Y. Nat. Chem. 2016;8:638–639. doi: 10.1038/nchem.2548. PubMed DOI

Shen K. Chen X. Chen J. Li Y. ACS Catal. 2016;6:5887–5903. doi: 10.1021/acscatal.6b01222. DOI

Yan N. Yuan Y. Dyson P. J. Dalton Trans. 2013;42:13294–13304. doi: 10.1039/C3DT51180D. PubMed DOI

Cantillo Da. Baghbanzadeh M. Kappe C. O. Angew. Chem., Int. Ed. 2012;51:10190–10193. doi: 10.1002/anie.201205792. PubMed DOI

Holz J. Pfeffer C. Zuo H. Beierlein D. Richter G. Klemm E. Peters R. Angew. Chem., Int. Ed. 2019;58:10330–10334. doi: 10.1002/anie.201902352. PubMed DOI

Zadoina L. Soulantica K. Ferrere S. Lonetti B. Respaud M. Mingotaud A. F. Falqui A. Genovese A. Chaudret B. Mauzac M. J. Mater. Chem. 2011;21:6988–6994. doi: 10.1039/C0JM03872E. DOI

Ricci A., Amino group chemistry: From synthesis to the life sciences, Wiley-VCH, 2008

Top 200 drugs production, National Science Foundation, J Chem. Educ., 2010, 87, 1348

Lawrence S. A., Amines: synthesis, properties and applications, Cambridge University Press, 2004

Shi F. and Cui X., Catalytic amination for N-alkyl amine synthesis, Academic Press, 2018

Meindl W. R. Angerer E. V. Schoenenberger H. Ruckdeschel G. Med. Chem. 1984;27:1111–1118. doi: 10.1021/jm00375a005. PubMed DOI

Froidevaux V. Negrell C. Caillol S. Pascault J.-P. Boutevin B. Chem. Rev. 2016;116:14181–14224. doi: 10.1021/acs.chemrev.6b00486. PubMed DOI

Yan T. Feringa B. L. Barta K. Nat. Commun. 2014;5:5602. doi: 10.1038/ncomms6602. PubMed DOI

Gomez S. Peters J. A. Maschmeyer T. Adv. Synth. Catal. 2002;344:1037–1057. doi: 10.1002/1615-4169(200212)344:10<1037::AID-ADSC1037>3.0.CO;2-3. DOI

Alinezhad H. Yavari H. Salehian F. Curr. Org. Chem. 2015;19:1021–1049. doi: 10.2174/1385272819666150311233021. DOI

Nugenta T. C. El-Shazlya M. Adv. Synth. Catal. 2010;352:753–819. doi: 10.1002/adsc.200900719. DOI

Natte K. Neumann H. Jagadeesh R. V. Beller M. Nat. Commun. 2017;8:1344. doi: 10.1038/s41467-017-01428-0. PubMed DOI PMC

https://reagentguides.com/reagent-guides/reductive-amination/list-of-reagents/hydrogen-metal-catalysts-precious-and-base-metal https://reagentguides.com/reagent-guides/reductive-amination/list-of-reagents/hydrogen-metal-catalysts-precious-and-base-metal

Gusak K. N. Ignatovich Z. V. Koroleva E. V. Russ. Chem. Rev. 2015;84:288–309. doi: 10.1070/RCR4443. DOI

Nakamura Y. Kon K. Touchy A. S. Shimizu K.-I. Ueda W. ChemCatChem. 2015;7:921–924. doi: 10.1002/cctc.201402996. DOI

Liang G. Wang A. Li L. Xu G. Yan N. Zhang T. Angew. Chem., Int. Ed. 2017;56:3050–3054. doi: 10.1002/anie.201610964. PubMed DOI

Komanoya T. Kinemura T. Kita Y. Kamata Y. K. Hara M. J. Am. Chem. Soc. 2017;139:11493–11499. doi: 10.1021/jacs.7b04481. PubMed DOI

Chatterjee M. Ishizakaa T. Kawanami H. Green Chem. 2016;18:487–496. doi: 10.1039/C5GC01352F. DOI

Gross T. Seayad A. M. Ahmad M. Beller M. Org. Lett. 2002;4:2055–2058. doi: 10.1021/ol0200605. PubMed DOI

Riermeier T., Haack K.-J., Dingerdissen U., Börner A., Tararov V. and Kadyrov R.,

Gallardo-Donaire J. Ernst M. Trapp O. Schaub T. Adv. Synth. Catal. 2016;358:358–363. doi: 10.1002/adsc.201500968. DOI

Gallardo-Donaire J. Wysocki M. H. Ernst M. Rominger F. Trapp O. Stephen A. Hashmi L. Schaefer A. Comba P. Schaub T. J. Am. Chem. Soc. 2018;140:355–361. doi: 10.1021/jacs.7b10496. PubMed DOI

Ogo S. Uehara K. Abura T. Fukuzumi S. J. Am. Chem. Soc. 2014;126:3020–3021. doi: 10.1021/ja031633r. PubMed DOI

Kadyrov R. Riermeier T. H. Angew. Chem., Int. Ed. 2003;42:5472–5474. doi: 10.1002/anie.200352503. PubMed DOI

Senthamarai T. Murugesan K. Schneidewind J. Kalevaru N. V. Baumann W. Neumann H. Kamer P. C. J. Beller M. Jagadeesh R. V. Nat. Commun. 2018;9:4123. doi: 10.1038/s41467-018-06416-6. PubMed DOI PMC

Tan X. Gao S. Zeng W. Xin S. Yin Q. Zhang X. J. Am. Chem. Soc. 2018;140:2024–2027. doi: 10.1021/jacs.7b12898. PubMed DOI

Wang Z., “Mignonac reaction” in comprehensive organic name reactions and reagents, Wiley, 2010

https://erowid.org/archive/rhodium/chemistry/reductive.amination.html, 2004

Zola A. S. Ribeiro R. U. Bueno J. M. C. Zanchet D. Arroyo P. A. J. Exp. Nanosci. 2014;9:398–405. doi: 10.1080/17458080.2012.662723. DOI

Yang J. Liu H. Martens W. N. Frost R. L. J. Phys. Chem. 2010;114:111–119.

Wagner C. D., Davis L. E., Moulder J. F. and Mullenberg G. E., Handbook of X-ray Photoelectron Spectroscopy, Minnesota: Perkin-Elmer Corporation, 1978

Khandar A. A. Shaabani B. Belaj F. Bakhtiari A. Inorg. Chim. Acta. 2007;360:3255–3264. doi: 10.1016/j.ica.2007.03.036. DOI

van Den Bergen A. Murray K. S. West B. O. J. Organomet. Chem. 1971;33:89–96. doi: 10.1016/S0022-328X(00)80806-2. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...