Impact of Microwaves on Organic Synthesis and Strategies toward Flow Processes and Scaling Up
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34125541
PubMed Central
PMC8524417
DOI
10.1021/acs.joc.1c00865
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Microwave-assisted organic synthesis has been widely studied and deliberated, opening up some controversial issues as well. Nowadays, microwave chemistry is a mature technology that has been well demonstrated in many cases with numerous advantages in terms of the reaction rate and yield. The strategies toward scaling up find an ally in continuous-flow reactor technology comparing dielectric and conductive heating.
Zobrazit více v PubMed
Varma R. S. Solvent-Free Organic Syntheses Using Supported Reagents and Microwave Irradiation. Green Chem. 1999, 1, 43.10.1039/a808223e. DOI
Nikačević N. M.; Huesman A. E. M.; Van den Hof P. M. J.; Stankiewicz A. I. Opportunities and challenges for process control in process intensification. Chem. Eng. Process. 2012, 52, 1.10.1016/j.cep.2011.11.006. DOI
Wegner J.; Ceylan S.; Kirschning A. Flow Chemistry - A Key Enabling Technology for (Multistep) Organic Synthesis. Adv. Synth. Catal. 2012, 354, 17.10.1002/adsc.201100584. DOI
Alcazar J.; de Munoz M. In Microwave-Assisted Continuous Flow Organic Synthesis (MACOS). In Microwaves in Organic Synthesis, 3rd ed.; de la Hoz A.; Loupy A, Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2012; pp 1173–1204.
Porta R.; Benaglia M.; Puglisi A. Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products. Org. Process Res. Dev. 2016, 20, 2.10.1021/acs.oprd.5b00325. DOI
Egami H.; Hamashima Y. Practical and Scalable Organic Reactions with Flow Microwave Apparatus. Chem. Rec. 2019, 19, 157.10.1002/tcr.201800132. PubMed DOI
Monguchi Y.; Ichikawa T.; Yamada T.; Sawama Y.; Sajiki H. Continuous-Flow Suzuki-Miyaura and Mizoroki-Heck Reactions under Microwave Heating Conditions. Chem. Rec. 2019, 19, 3.10.1002/tcr.201800063. PubMed DOI
Tagliapietra S.; Calcio Gaudino E.; Martina K.; Barge A.; Cravotto G. Microwave Irradiation in Micro- Meso-fluidic Systems; Hybrid Technology has Issued the Challenge. Chem. Rec. 2019, 19, 98.10.1002/tcr.201800057. PubMed DOI
De Risi C.; Bortolini O.; Brandolese A.; Di Carmine G.; Ragno D.; Massi A. Recent advances in continuous-flow organocatalysis for process intensification. React. Chem. Eng. 2020, 5, 1017.10.1039/D0RE00076K. DOI
Horikoshi S.; Serpone N. Microwave Flow Chemistry as a Methodology in Organic Syntheses, Enzymatic Reactions, and Nanoparticle Syntheses. Chem. Rec. 2019, 19, 118.10.1002/tcr.201800062. PubMed DOI
Estel L.; Poux M.; Benamara N.; Polaert I. Continuous flow-microwave reactor: Where are we?. Chem. Eng. Process. 2017, 113, 56.10.1016/j.cep.2016.09.022. DOI
Goyal H.; Mehdad A.; Lobo R. F.; Stefanidis G. D.; Vlachos D. G. Scaleup of a Single-Mode Microwave Reactor. Ind. Eng. Chem. Res. 2020, 59, 2516.10.1021/acs.iecr.9b04491. DOI
Nigar H.; Sturm G. S. J.; Garcia-Baños B.; Peñaranda-Foix F. L.; Catalá-Civera J. M.; Mallada R.; Stankiewicz A.; Santamaría J. Numerical analysis of microwave heating cavity: Combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed. Appl. Therm. Eng. 2019, 155, 226.10.1016/j.applthermaleng.2019.03.117. DOI
Morte M.; Dean J.; Kitajima H.; Hascakir B. Increasing the Penetration Depth of Microwave Radiation Using Acoustic Stress to Trigger Piezoelectricity. Energy Fuels 2019, 33, 6327.10.1021/acs.energyfuels.9b01150. DOI
Martina K.; Tagliapietra S.; Barge A.; Cravotto G. Combined Microwaves/Ultrasound, a Hybrid Technology. Top. Curr. Chem. 2016, 374, 1.10.1007/s41061-016-0082-7. PubMed DOI
Buttress A. J.; Hargreaves G.; Ilchev A.; Monti T.; Sklavounou A.; Katrib J.; Martin-Tanchereau P.; Unthank M. G.; Irvine D. J.; Dodds C. D. Design and optimization of a microwave reactor for kilo-scale polymer synthesis. Chem. Eng. Sci.: X 2019, 2, 100022.10.1016/j.cesx.2019.100022. DOI
Vámosi P.; Matsuo K.; Masuda T.; Sato K.; Narumi T.; Takeda K.; Mase N. Rapid Optimization of Reaction Conditions Based on Comprehensive Reaction Analysis Using a Continuous Flow Microwave Reactor. Chem. Rec. 2019, 19, 77.10.1002/tcr.201800048. PubMed DOI
Barham J. P.; Koyama E.; Norikane Y.; Ohneda N.; Yoshimura T. Microwave Flow: A Perspective on Reactor and Microwave Configurations and the Emergence of Tunable Single-Mode Heating Toward Large-Scale Applications. Chem. Rec. 2019, 19, 188.10.1002/tcr.201800104. PubMed DOI
Dabrowska S.; Chudoba T.; Wojnarowicz J.; Lojkowski W. Current Trends in the Development of Microwave Reactors for the Synthesis of Nanomaterials in Laboratories and Industries: A Review. Crystals 2018, 8, 379.10.3390/cryst8100379. DOI
Stefanidis G. D.; Muñoz A. N.; Sturm G. S. J.; Stankiewicz A. A helicopter view of microwave application to chemical processes: reactions, separations, and equipment concepts. Rev. Chem. Eng. 2014, 30, 233.10.1515/revce-2013-0033. DOI
Baxendale I.; Hayward J.; Ley S. Microwave Reactions Under Continuous Flow Conditions. Comb. Chem. High Throughput Screening 2007, 10, 802.10.2174/138620707783220374. PubMed DOI
Morschhäuser R.; Krull M.; Kayser C.; Boberski C.; Bierbaum R.; Püschner P. A.; Glasnov T. N.; Kappe C. O. Microwave-assisted continuous flow synthesis on industrial scale. Green Process. Synth. 2012, 1, 281.10.1515/gps-2012-0032. DOI
Patil N. G.; Benaskar F.; Rebrov E. V.; Meuldijk J.; Hulshof L. A.; Hessel V.; Schouten J. C. Microwave Setup Design for Continuous Fine-Chemicals Synthesis. Chem. Eng. Technol. 2014, 37, 1645.10.1002/ceat.201400118. DOI
Rinaldi L.; Carnaroglio D.; Rotolo L.; Cravotto G. A Microwave-Based Chemical Factory in the Lab: From Milligram to Multigram Preparations. J. Chem. 2015, 2015, 879531.10.1155/2015/879531. DOI
Koyama E.; Ito N.; Sugiyama J.-i.; Barham J. P.; Norikane Y.; Azumi R.; Ohneda N.; Ohno Y.; Yoshimura T.; Odajima H.; Okamoto T. A continuous-flow resonator-type microwave reactor for high-efficiency organic synthesis and Claisen rearrangement as a model reaction. J. Flow Chem. 2018, 8, 147.10.1007/s41981-018-0021-6. DOI
Öhrngren P.; Fardost A.; Russo F.; Schanche J.-S.; Fagrell M.; Larhed M. Evaluation of a Nonresonant Microwave Applicator for Continuous-Flow Chemistry Applications. Org. Process Res. Dev. 2012, 16, 1053.10.1021/op300003b. DOI
Moseley J. D.; Lenden P.; Lockwood M.; Ruda K.; Sherlock J.-P.; Thomson A. D.; Gilday J. P. A Comparison of Commercial Microwave Reactors for Scale-Up within Process Chemistry. Org. Process Res. Dev. 2008, 12, 30.10.1021/op700186z. DOI
Furuta A.; Fukuyama T.; Ryu I. Efficient Flow Fischer Esterification of Carboxylic Acids with Alcohols Using Sulfonic Acid-Functionalized Silica as Supported Catalyst. Bull. Chem. Soc. Jpn. 2017, 90, 607.10.1246/bcsj.20170025. DOI
Nagahata R.; Nakamura T.; Mori Y.; Takeuchi K. Microwave-assisted facile and rapid esterification of amino acids i: esterification of L-leucine from batch to flow processes and scale-up. Nat. Sci. 2017, 9 (4), 110.10.4236/ns.2017.94011. DOI
Li X.; Xu J. Effects of the Microwave Power on the Microwave-assisted Esterification. Curr. Microwave Chem. 2017, 4, 158.10.2174/2213335603666160906151018. DOI
Tajti A.; Toth N.; Balint E.; Keglevich G. Esterification of benzoic acid in a continuous flow microwave reactor. J. Flow Chem. 2018, 8, 11.10.1007/s41981-018-0001-x. DOI
Negus M. P.; Mansfield A. C.; Leadbeater N. E. The preparation of ethyl levulinate facilitated by flow processing: the catalyzed and uncatalyzed esterification of levulinic acid. J. Flow Chem. 2015, 5, 148.10.1556/1846.2015.00005. DOI
Balint E.; Tajti A.; Toth N.; Keglevich G. Continuous Flow Alcoholysis of Dialkyl H-Phosphonates with Aliphatic Alcohols. Molecules 2018, 23, 1618.10.3390/molecules23071618. PubMed DOI PMC
Kiss N. Z.; Henyecz R.; Keglevich G. Continuous flow esterification of a H-phosphinic acid, and transesterification of H-phosphinates and H-phosphonates under microwave conditions. Molecules 2020, 25, 719.10.3390/molecules25030719. PubMed DOI PMC
Balint E.; Tajti A.; Keglevich G. Application of the microwave technique in continuous flow processing of organophosphorus chemical reactions. Materials 2019, 12, 788.10.3390/ma12050788. PubMed DOI PMC
Isaksson R.; Kumpiņa I.; Larhed M.; Wannberg J. Rapid and straightforward transesterification of sulfonyl carbamates. Tetrahedron Lett. 2016, 57, 1476.10.1016/j.tetlet.2016.02.071. DOI
Kumpina I.; Isaksson R.; Saevmarker J.; Wannberg J.; Larhed M. Microwave Promoted Transcarbamylation Reaction of Sulfonylcarbamates under Continuous-Flow Conditions. Org. Process Res. Dev. 2016, 20, 440.10.1021/acs.oprd.5b00323. DOI
Marafie J. A.; Moseley J. D. The application of stop-flow microwave technology to scaling-out SNAr reactions using a soluble organic base. Org. Biomol. Chem. 2010, 8, 2219.10.1039/b926537f. PubMed DOI
Wiles C.; Watts P. Translation of microwave methodology to continuous flow for the efficient synthesis of diaryl ethers via a base-mediated SNAr reaction. Beilstein J. Org. Chem. 2011, 7, 1360.10.3762/bjoc.7.160. PubMed DOI PMC
Organ M. G.; Hanson P. R.; Rolfe A.; Samarakoon T. B.; Ullah F. Accessing Stereochemically Rich Sultams via Microwave-assisted, Continuous-flow Organic Synthesis (MACOS) Scale-out. J. Flow Chem. 2012, 1, 32.10.1556/jfchem.2011.00008. PubMed DOI PMC
Horikoshi S.; Watanabe T.; Kamata M.; Suzuki Y.; Serpone N. Microwave-assisted organic syntheses: microwave effect on intramolecular reactions – the Claisen rearrangement of allylphenyl ether and 1-allyloxy-4-methoxybenzene. RSC Adv. 2015, 5, 90272.10.1039/C5RA18039B. DOI
Abele S.; Hock S.; Schmidt G.; Funel J.-A.; Marti R. High-Temperature Diels-Alder Reactions: Transfer from Batch to Continuous Mode. Org. Process Res. Dev. 2012, 16, 1114.10.1021/op200320w. DOI
Karney M. J.; Porter K. A.; Barnhardt E. K.; Vanier G. S. Meso-scale microwave-assisted continuous flow reactions utilizing a selective heating matrix. RSC Adv. 2013, 3, 7106.10.1039/c3ra40783g. DOI
Yokozawa S.; Ohneda N.; Muramatsu K.; Okamoto T.; Odajima H.; Ikawa T.; Sugiyama J.-i.; Fujita M.; Sawairi T.; Egami H.; Hamashima Y.; Egi M.; Akai S. Development of a highly efficient single-mode microwave applicator with a resonant cavity and its application to continuous flow syntheses. RSC Adv. 2015, 5, 10204.10.1039/C4RA12428F. DOI
Barham J. P.; Tanaka S.; Koyama E.; Ohneda N.; Okamoto T.; Odajima H.; Sugiyama J.-i.; Norikane Y. Selective, Scalable Synthesis of C60-Fullerene/Indene Monoadducts Using a Microwave Flow Applicator. J. Org. Chem. 2018, 83, 4348.10.1021/acs.joc.7b03209. PubMed DOI
Barham J. P.; Tamaoki S.; Egami H.; Ohneda N.; Okamoto T.; Odajima H.; Hamashima Y. C-Alkylation of N-alkylamides with styrenes in air and scale-up using a microwave flow reactor. Org. Biomol. Chem. 2018, 16, 7568.10.1039/C8OB02282H. PubMed DOI
Rathi A. K.; Gawande M. B.; Zboril R.; Varma R. S. Microwave-assisted synthesis - catalytic applications in aqueous media. Coord. Chem. Rev. 2015, 291, 68.10.1016/j.ccr.2015.01.011. DOI
Salih K. S. M.; Baqi Y. Microwave-assisted palladium-catalyzed cross-coupling reactions: Generation of carbon–carbon bond. Catalysts 2020, 10, 4.10.3390/catal10010004. DOI
Petricci E.; Cini E.; Taddei M. Metal Catalysis with Microwaves in Organic Synthesis: a Personal Account. Eur. J. Org. Chem. 2020, 2020, 4435.10.1002/ejoc.202000092. DOI
Martina K.; Manzoli M.; Gaudino E. C.; Cravotto G. Eco-friendly physical activation methods for suzuki–miyaura reactions. Catalysts 2017, 7, 98.10.3390/catal7040098. DOI
Monguchi Y.; Ichikawa T.; Yamada T.; Sawama Y.; Sajiki H. Continuous-flow Suzuki-Miyaura and Mizoroki-Heck Reactions under Microwave Heating Conditions. Chem. Rec. 2019, 19, 3.10.1002/tcr.201800063. PubMed DOI
Etse K. S.; Ngendera A.; Ntumba N. T.; Demonceau A.; Delaude L.; Dragutan I.; Dragutan V. Microwave-assisted olefin metathesis as pivotal step in the synthesis of bioactive compounds. Curr. Med. Chem. 2018, 24 (41), 4538.10.2174/0929867324666170314122820. PubMed DOI
Driowya M.; Saber A.; Marzag H.; Demange L.; Bougrin K.; Benhida R. Microwave-assisted syntheses of bioactive seven-membered, macro-sized heterocycles and their fused derivatives. Molecules 2016, 21, 1032.10.3390/molecules21081032. PubMed DOI PMC
Jana A.; Zielinski G. K.; Czarnocka-Sniadala S.; Grudzien K.; Podwysocka D.; Szulc M.; Kajetanowicz A.; Grela K. Synthesis of Substituted β-Functionalised Styrenes by Microwave-Assisted Olefin Cross-Metathesis and Scalable Synthesis of Apremilast. ChemCatChem 2019, 11, 5808.10.1002/cctc.201901473. DOI
Comer E.; Organ M. G. A Microreactor for Microwave-Assisted Capillary(Continuous Flow) Organic Synthesis. J. Am. Chem. Soc. 2005, 127, 8160.10.1021/ja0512069. PubMed DOI
Rosana M. R.; Tao Y.; Stiegman A. E.; Dudley G. B. On the rational design of microwave-actuated organic reactions. Chem. Sci. 2012, 3, 1240.10.1039/c2sc01003h. DOI
Alexander K. A.; Paulhus E. A.; Lazarus G. M. L.; Leadbeater N. E. Exploring the reactivity of a ruthenium complex in the metathesis of biorenewable feedstocks to generate value-added chemicals. J. Organomet. Chem. 2016, 812, 74.10.1016/j.jorganchem.2015.09.018. DOI
Morin E.; Sosoe J.; Raymond M.; Amorelli B.; Boden R. M.; Collins S. K. Synthesis of a Renewable Macrocyclic Musk: Evaluation of Batch, Microwave, and Continuous Flow Strategies. Org. Process Res. Dev. 2019, 23, 283.10.1021/acs.oprd.8b00450. DOI
Godin E.; Bedard A.-C.; Raymond M.; Collins S. K. Phase separation macrocyclization in a complex pharmaceutical setting: Application toward the synthesis of vaniprevir. J. Org. Chem. 2017, 82, 7576.10.1021/acs.joc.7b01308. PubMed DOI
Ching Lau C.; Kemal Bayazit M.; Reardon P. J. T.; Tang J. Microwave Intensified Synthesis: Batch and Flow Chemistry. Chem. Rec. 2019, 19, 172.10.1002/tcr.201800121. PubMed DOI
Nadagouda M. N.; Speth T. F.; Varma R. S. Microwave-Assisted Green Synthesis of Silver Nanostructures. Acc. Chem. Res. 2011, 44, 469.10.1021/ar1001457. PubMed DOI
Varma R. S. Greener routes to organics and nanomaterials: sustainable applications of nanocatalysts. Pure Appl. Chem. 2013, 85, 1703.10.1351/PAC-CON-13-01-15. DOI
Li H.; Zhang C.; Pang C.; Li X.; Gao X. The Advances in the Special Microwave Effects of the Heterogeneous Catalytic Reactions. Front. Chem. 2020, 8, 355.10.3389/fchem.2020.00355. PubMed DOI PMC
Gawande M. B.; Shelke S. N.; Zboril R.; Varma R. S. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Acc. Chem. Res. 2014, 47, 1338.10.1021/ar400309b. PubMed DOI
Varma R. S. Journey on greener pathways: from the use of alternate energy inputs and benign reaction media to sustainable applications of nano-catalysts in synthesis and environmental remediation. Green Chem. 2014, 16, 2027.10.1039/c3gc42640h. DOI
Kokel A.; Schäfer C.; Török B. Application of microwave-assisted heterogeneous catalysis in sustainable synthesis design. Green Chem. 2017, 19, 3729.10.1039/C7GC01393K. DOI
Kopylovich M. N.; Ribeiro A. P.C.; Alegria E. C.B.A.; Martins N. M.R.; Martins L. M.D.R.S.; Pombeiro A. J.L. Catalytic Oxidation of Alcohols. Adv. Organomet. Chem. 2015, 63, 91.10.1016/bs.adomc.2015.02.004. DOI
Cini E.; Petricci E.; Taddei M. Pd/C Catalysis under Microwave Dielectric Heating. Catalysts 2017, 7, 89.10.3390/catal7030089. DOI
Bucciol F.; Tabasso S.; Grillo G.; Menegazzo F.; Signoretto M.; Manzoli M.; Cravotto G. Boosting levulinic acid hydrogenation to value-added 1,4-pentanediol using microwave-assisted gold catalysis. J. Catal. 2019, 380, 267.10.1016/j.jcat.2019.09.041. DOI
Moran M. J.; Martina K.; Stefanidis G. D.; Jordens J.; Gerven T. V.; Goovaerts V.; Manzoli M.; Groffils C.; Cravotto G. Glycerol: An Optimal Hydrogen Source for Microwave-Promoted Cu-Catalyzed Transfer Hydrogenation of Nitrobenzene to Aniline. Front. Chem. 2020, 8, 34.10.3389/fchem.2020.00034. PubMed DOI PMC
Calcio Gaudino E.; Manzoli M.; Carnaroglio D.; Wu Z.; Grillo G.; Rotolo L.; Medlock J.; Bonrath W.; Cravotto G. Sonochemical preparation of alumina-spheres loaded with Pd nanoparticles for 2-butyne-1,4-diol semi-hydrogenation in a continuous flow microwave reactor. RSC Adv. 2018, 8, 7029.10.1039/C8RA00331A. PubMed DOI PMC
Song S.; Sun X.; Li X.; Yuan Y.; Jiao N. Efficient and Practical Oxidative Bromination and Iodination of Arenes and Heteroarenes with DMSO and Hydrogen Halide: A Mild Protocol for Late-Stage Functionalization. Org. Lett. 2015, 17, 2886.10.1021/acs.orglett.5b00932. PubMed DOI
Jin Y.; Yang J.; Feng X.; Li J.; Xu J.; Chen X.; Wang S.; Lv Y.; Yu J. Development of large-scale oxidative Bromination with HBr-DMSO by using a continuous-flow microwave system for the subsequent synthesis of 4-Methoxy-2-methyldiphenylamine. J. Flow Chem. 2020, 10, 369.10.1007/s41981-020-00094-6. DOI
Bundhoo Z. M. A. Microwave-assisted conversion of biomass and waste materials to biofuels. Renewable Sustainable Energy Rev. 2018, 82, 1149.10.1016/j.rser.2017.09.066. PubMed DOI
Manvar A.; Shah A. Continuous Flow and Microwave-Assisted Vorbrüggen Glycosylations: Historical Perspective to High-Throughput Strategies. Asian J. Org. Chem. 2014, 3, 1134.10.1002/ajoc.201402119. DOI
Sniady A.; Bedore M. W.; Jamison T. F. One-Flow, Multistep Synthesis of Nucleosides by Brønsted Acid-Catalyzed Glycosylation. Angew. Chem., Int. Ed. 2011, 50, 2155.10.1002/anie.201006440. PubMed DOI
Su T.; Zhao D.; Wang Y.; Lue H.; Varma R. S.; Len C. Innovative Protocols in the Catalytic Oxidation of 5-Hydroxymethylfurfural. ChemSusChem 2021, 14, 266.10.1002/cssc.202002232. PubMed DOI
Zhao D.; Rodriguez-Padron D.; Triantafyllidis K. S.; Wang Y.; Luque R.; Len C. Microwave-Assisted Oxidation of Hydroxymethyl Furfural to Added-Value Compounds over a Ruthenium-Based Catalyst. ACS Sustainable Chem. Eng. 2020, 8, 3091.10.1021/acssuschemeng.9b05656. DOI
Martina K.; Tagliapietra S.; Veselov V. V.; Cravotto G. Green protocols in heterocycle syntheses via 1,3-dipolar cycloadditions. Front. Chem. 2019, 7, 95.10.3389/fchem.2019.00095. PubMed DOI PMC
Driowya M.; Saber A.; Marzag H.; Demange L.; Benhida R.; Bougrin K. Microwave-Assisted Synthesis of Bioactive Six-Membered Heterocycles and Their Fused Analogues. Molecules 2016, 21, 492.10.3390/molecules21040492. PubMed DOI PMC
Gutmann B.; Gottsponer M.; Elsner P.; Cantillo D.; Roberge D. M.; Kappe C. O. On the Fischer Indole Synthesis of 7-Ethyltryptophol—Mechanistic and Process Intensification Studies under Continuous Flow Conditions. Org. Process Res. Dev. 2013, 17, 294.10.1021/op300363s. DOI
Panther J.; Rechmann J.; Muller T. J. J. Fischer indole synthesis of 3-benzyl-1H-indole via conductive and dielectric heating. Chem. Heterocycl. Compd. 2016, 52, 897.10.1007/s10593-017-1983-2. DOI
Xu J. G.; Yu J. G.; Jin Y.; Li J.; Yu Z. Q.; Lv Y. W. A continuous flow microwave-assisted fischer indole synthesis of 7-Ethyltryptophol. Chem. Eng. Process. 2017, 121, 144.10.1016/j.cep.2017.09.001. DOI
Cirillo P. F.; Caccavale A.; DeLuna A. Green Fischer Indole Synthesis Using a Steroidal Ketone in a Conductively Heated Sealed-Vessel Reactor for the Advanced Undergraduate Laboratory. J. Chem. Educ. 2021, 98, 567.10.1021/acs.jchemed.0c00991. DOI
Damm M.; Glasnov T. N.; Kappe C. O. Translating High-Temperature Microwave Chemistry to Scalable Continuous Flow Processes. Org. Process Res. Dev. 2010, 14, 215.10.1021/op900297e. DOI
Sauks J. M.; Mallik D.; Lawryshyn Y.; Bender T.; Organ M. A Continuous-Flow Microwave Reactor for Conducting High-Temperature and High-Pressure Chemical Reactions. Org. Process Res. Dev. 2014, 18, 1310.10.1021/op400026g. DOI
Kappe C. O. Unraveling the Mysteries of Microwave Chemistry Using Silicon Carbide Reactor Technology. Acc. Chem. Res. 2013, 46, 1579.10.1021/ar300318c. PubMed DOI
Cho H.; Török F.; Török B. Energy efficiency of heterogeneous catalytic microwave-assisted organic reactions. Green Chem. 2014, 16, 3623.10.1039/C4GC00037D. DOI
Fairoosa J.; Saranya S.; Radhika S.; Anilkumar G. Recent Advances in Microwave Assisted Multicomponent Reactions. Chem. Select 2020, 5, 5180.10.1002/slct.202000683. DOI
Fouad M. A.; Abdel-Hamid H.; Ayoup M. S. Two decades of recent advances of Ugi reactions: synthetic and pharmaceutical applications. RSC Adv. 2020, 10, 42644.10.1039/D0RA07501A. PubMed DOI PMC
Barreto A. d. F. S.; Andrade C. K. Z. Microwave-mediated synthesis of a cyclic heptapeptoid through consecutive Ugi reactions. Tetrahedron 2018, 74, 6861.10.1016/j.tet.2018.10.018. DOI
Salvador C. E. M.; Pieber B.; Neu P. M.; Torvisco A.; Kleber Z. Andrade C.; Kappe C. O. A sequential Ugi multicomponent/Cu-catalyzed azide-alkyne cycloaddition approach for the continuous flow generation of cyclic peptoids. J. Org. Chem. 2015, 80, 4590.10.1021/acs.joc.5b00445. PubMed DOI
Salvador C. E. M.; Andrade C. K. Z. A Mild, Fast, and Scalable Synthesis of Substituted α-Acyloxy Ketones via Multicomponent Reaction Using a Continuous Flow Approach. Front. Chem. 2019, 7, 531.10.3389/fchem.2019.00531. PubMed DOI PMC
Slobbe P.; Ruijter E.; Orru R. V. A. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm 2012, 3, 1189.10.1039/c2md20089a. DOI
Abdella A. M.; Abdelmoniem A. M.; Abdelhamid I. A.; Elwahy A. H. M. Synthesis of heterocyclic compounds via Michael and Hantzsch reactions. J. Heterocycl. Chem. 2020, 57, 1476.10.1002/jhet.3883. DOI
Khadilkar B. M.; Madyar V. R. Scaling Up of Dihydropyridine Ester Synthesis by Using Aqueous Hydrotrope Solutions in a Continuous Microwave Reactor. Org. Process Res. Dev. 2001, 5, 452.10.1021/op010026q. DOI
Devine W. G.; Leadbeater N. E. Probing the energy efficiency of microwave heating and continuous-flow conventional heating as tools for organic chemistry. ARKIVOC 2011, 2011, 127.10.3998/ark.5550190.0012.512. DOI
Bagley M. C.; Fusillo V.; Jenkins R. L.; Lubinu M. C.; Mason C. One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor. Beilstein J. Org. Chem. 2013, 9, 1957.10.3762/bjoc.9.232. PubMed DOI PMC
He W.; Fang Z.; Zhang K.; Tu T.; Lv N.; Qiu C.; Guo K. A novel micro-flow system under microwave irradiation for continuous synthesis of 1,4-dihydropyridines in the absence of solvents via Hantzsch reaction. Chem. Eng. J. 2018, 331, 161.10.1016/j.cej.2017.08.103. DOI
Koukabi N.; Kolvari E.; Khazaei A.; Zolfigol M. A.; Shirmardi-Shaghasemi B.; Khavasi H. R. Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. Chem. Commun. 2011, 47, 9230.10.1039/c1cc12693h. PubMed DOI
Engen K.; Saevmarker J.; Rosenstroem U.; Wannberg J.; Lundbaeck T.; Jenmalm-Jensen A.; Larhed M. Microwave Heated Flow Synthesis of Spiro-oxindole Dihydroquinazolinone Based IRAP Inhibitors. Org. Process Res. Dev. 2014, 18, 1582.10.1021/op500237k. DOI
Lo V. K.-Y.; Chan Y.-M.; Zhou D.; Toy P. H.; Che C.-M. Highly Enantioselective Synthesis Using Prolinol as a Chiral Auxiliary: Silver-Mediated Synthesis of Axially Chiral Vinylallenes and Subsequent(Hetero)-Diels–Alder Reactions. Org. Lett. 2019, 21, 7717.10.1021/acs.orglett.9b02514. PubMed DOI
Eronen A. E. K.; Mannisto J. K.; Moslova K.; Nieger M.; Heliövaara E.; Repo T. Synthesis of Diaryl Hydroxyl Dicarboxylic Acids from Amino Acids. J. Org. Chem. 2020, 85, 5799.10.1021/acs.joc.9b03320. PubMed DOI PMC
Xu J. Stereoselectivity in the synthesis of 2-azetidinones from ketenes and imines via the staudinger reaction. ARKIVOC 2008, 2009, 21.10.3998/ark.5550190.0010.903. DOI
Musio B.; Mariani F.; Sliwinski E. P.; Kabeshov M. A.; Odajima H.; Ley S. V. Combination of Enabling Technologies to Improve and Describe the Stereoselectivity of Wolff-Staudinger Cascade Reaction. Synthesis 2016, 48, 3515.10.1055/s-0035-1562579. DOI