Epigenomic Landscape of Lyme Disease Spirochetes Reveals Novel Motifs
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Intramural
PubMed
34156261
PubMed Central
PMC8262957
DOI
10.1128/mbio.01288-21
Knihovny.cz E-resources
- Keywords
- Borrelia, Lyme disease, epigenetic regulation, methylation, motifs,
- MeSH
- Borrelia burgdorferi classification genetics MeSH
- DNA, Bacterial genetics MeSH
- Epigenomics * MeSH
- Humans MeSH
- Lyme Disease microbiology MeSH
- Methylation MeSH
- Nucleotide Motifs * MeSH
- Plasmids genetics metabolism MeSH
- Sequence Analysis, DNA * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, N.I.H., Intramural MeSH
- Names of Substances
- DNA, Bacterial MeSH
Borrelia burgdorferi, the etiological agent of Lyme disease, persists in nature through an enzootic cycle consisting of a vertebrate host and an Ixodes tick vector. The sequence motifs modified by two well-characterized restriction/modification (R/M) loci of B. burgdorferi type strain B31 were recently described, but the methylation profiles of other Lyme disease Borrelia bacteria have not been characterized. Here, the methylomes of B. burgdorferi type strain B31 and 7 clonal derivatives, along with B. burgdorferi N40, B. burgdorferi 297, B. burgdorferi CA-11, B. afzelii PKo, B. afzelii BO23, and B. garinii PBr, were defined through PacBio single-molecule real-time (SMRT) sequencing. This analysis revealed 9 novel sequence motifs methylated by the plasmid-encoded restriction/modification enzymes of these Borrelia strains. Furthermore, while a previous analysis of B. burgdorferi B31 revealed an epigenetic impact of methylation on the global transcriptome, the current data contradict those findings; our analyses of wild-type B. burgdorferi B31 revealed no consistent differences in gene expression among isogenic derivatives lacking one or more restriction/modification enzymes. IMPORTANCE The principal causative agent of Lyme disease in humans in the United States is Borrelia burgdorferi, while B. burgdorferi, B. afzelii, and B. garinii, collectively members of the Borrelia burgdorferi sensu lato species complex, cause Lyme disease in Europe and Asia. Two plasmid-encoded restriction/modification systems have been shown to limit the genetic transformation of B. burgdorferi type strain B31 with foreign DNA, but little is known about the restriction/modification systems of other Lyme disease Borrelia bacteria. This paper describes the methylation motifs present on genomic DNAs of multiple B. burgdorferi, B. afzelii, and B. garinii strains. Contrary to a previous report, we did not find evidence for an epigenetic impact on gene expression by methylation. Knowledge of the motifs recognized and methylated by the restriction/modification enzymes of Lyme disease Borrelia will facilitate molecular genetic investigations of these important human pathogens. Additionally, the similar motifs methylated by orthologous restriction/modification systems of Lyme disease Borrelia bacteria and the presence of these motifs within recombinogenic loci suggest a biological role for these ubiquitous restriction/modification systems in horizontal gene transfer.
Faculty of Science University of South Bohemia Ceske Budejovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences Ceske Budejovice Czech Republic
See more in PubMed
Burgdorfer W, Barbour A, Hayes S, Benach J, Grunwaldt E, Davis J. 1982. Lyme disease—a tick-borne spirochetosis? Science 216:1317–1319. doi:10.1126/science.7043737. PubMed DOI
Steere AC, Grodzicki RL, Kornblatt AN, Craft JE, Barbour AG, Burgdorfer W, Schmid GP, Johnson E, Malawista SE. 1983. The spirochetal etiology of Lyme disease. N Engl J Med 308:733–740. doi:10.1056/NEJM198303313081301. PubMed DOI
Lane RS, Piesman J, Burgdorfer W. 1991. Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu Rev Entomol 36:587–609. doi:10.1146/annurev.en.36.010191.003103. PubMed DOI
Baranton G, Assous M, Postic D. 1992. Three bacterial species associated with Lyme borreliosis. Clinical and diagnostic implications. Bull Acad Natl Med 176:1075–1085. PubMed
Steere AC, Strle F, Wormser GP, Hu LT, Branda JA, Hovius JWR, Li X, Mead PS. 2016. Lyme borreliosis. Nat Rev Dis Primers 2:16090. doi:10.1038/nrdp.2016.90. PubMed DOI PMC
Xu Y, Kodner C, Coleman L, Johnson RC. 1996. Correlation of plasmids with infectivity of Borrelia burgdorferi sensu stricto type strain B31. Infect Immun 64:3870–3876. doi:10.1128/IAI.64.9.3870-3876.1996. PubMed DOI PMC
Purser JE, Norris SJ. 2000. Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97:13865–13870. doi:10.1073/pnas.97.25.13865. PubMed DOI PMC
Labandeira-Rey M, Skare JT. 2001. Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect Immun 69:446–455. doi:10.1128/IAI.69.1.446-455.2001. PubMed DOI PMC
Lawrenz MB, Kawabata H, Purser JE, Norris SJ. 2002. Decreased electroporation efficiency in Borrelia burgdorferi containing linear plasmids lp25 and lp56: impact on transformation of infectious B. burgdorferi. Infect Immun 70:4798–4804. doi:10.1128/iai.70.9.4798-4804.2002. PubMed DOI PMC
Jacobs MB, Norris SJ, Phillippi-Falkenstein KM, Philipp MT. 2006. Infectivity of the highly transformable BBE02− lp56− mutant of Borrelia burgdorferi, the Lyme disease spirochete, via ticks. Infect Immun 74:3678–3681. doi:10.1128/IAI.00043-06. PubMed DOI PMC
Kawabata H, Norris SJ, Watanabe H. 2004. BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infect Immun 72:7147–7154. doi:10.1128/IAI.72.12.7147-7154.2004. PubMed DOI PMC
Chen Q, Fischer JR, Benoit VM, Dufour NP, Youderian P, Leong JM. 2008. In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56. J Bacteriol 190:7885–7891. doi:10.1128/JB.00324-08. PubMed DOI PMC
Rego ROM, Bestor A, Rosa PA. 2011. Defining the plasmid-borne restriction-modification systems of the Lyme disease spirochete Borrelia burgdorferi. J Bacteriol 193:1161–1171. doi:10.1128/JB.01176-10. PubMed DOI PMC
Doerfler W. 1983. DNA methylation and gene activity. Annu Rev Biochem 52:93–124. doi:10.1146/annurev.bi.52.070183.000521. PubMed DOI
Modrich P, Lahue R. 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem 65:101–133. doi:10.1146/annurev.bi.65.070196.000533. PubMed DOI
Casadesus J, Low D. 2006. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70:830–856. doi:10.1128/MMBR.00016-06. PubMed DOI PMC
Korlach J, Turner SW. 2012. Going beyond five bases in DNA sequencing. Curr Opin Struct Biol 22:251–261. doi:10.1016/j.sbi.2012.04.002. PubMed DOI
Beaulaurier J, Schadt EE, Fang G. 2019. Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 20:157–172. doi:10.1038/s41576-018-0081-3. PubMed DOI PMC
Murray IA, Clark TA, Morgan RD, Boitano M, Anton BP, Luong K, Fomenkov A, Turner SW, Korlach J, Roberts RJ. 2012. The methylomes of six bacteria. Nucleic Acids Res 40:11450–11462. doi:10.1093/nar/gks891. PubMed DOI PMC
Oliveira PH, Ribis JW, Garrett EM, Trzilova D, Kim A, Sekulovic O, Mead EA, Pak T, Zhu S, Deikus G, Touchon M, Lewis-Sandari M, Beckford C, Zeitouni NE, Altman DR, Webster E, Oussenko I, Bunyavanich S, Aggarwal AK, Bashir A, Patel G, Wallach F, Hamula C, Huprikar S, Schadt EE, Sebra R, van Bakel H, Kasarskis A, Tamayo R, Shen A, Fang G. 2020. Epigenomic characterization of Clostridioides difficile finds a conserved DNA methyltransferase that mediates sporulation and pathogenesis. Nat Microbiol 5:166–180. doi:10.1038/s41564-019-0613-4. PubMed DOI PMC
Noyer-Weidner M, Trautner TA. 1993. Methylation of DNA in prokaryotes, p 39–108. In Jost JP, Saluz HP (ed), DNA methylation: molecular biology and biological significance, vol 64. Birkhauser, Basel, Switzerland. PubMed
Roberts RJ, Vincze T, Posfai J, Macelis D. 2015. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 43:D298–D299. doi:10.1093/nar/gku1046. PubMed DOI PMC
Blow MJ, Clark TA, Daum CG, Deutschbauer AM, Fomenkov A, Fries R, Froula J, Kang DD, Malmstrom RR, Morgan RD, Posfai J, Singh K, Visel A, Wetmore K, Zhao Z, Rubin EM, Korlach J, Pennacchio LA, Roberts RJ. 2016. The epigenomic landscape of prokaryotes. PLoS Genet 12:e1005854. doi:10.1371/journal.pgen.1005854. PubMed DOI PMC
Davis BM, Chao MC, Waldor MK. 2013. Entering the era of bacterial epigenomics with single molecule real time DNA sequencing. Curr Opin Microbiol 16:192–198. doi:10.1016/j.mib.2013.01.011. PubMed DOI PMC
Zhang Z, Wang J, Wang J, Wang J, Li Y. 2020. Estimate of the sequenced proportion of the global prokaryotic genome. Microbiome 8:134. doi:10.1186/s40168-020-00903-z. PubMed DOI PMC
Fang G, Munera D, Friedman DI, Mandlik A, Chao MC, Banerjee O, Feng Z, Losic B, Mahajan MC, Jabado OJ, Deikus G, Clark TA, Luong K, Murray IA, Davis BM, Keren-Paz A, Chess A, Roberts RJ, Korlach J, Turner SW, Kumar V, Waldor MK, Schadt EE. 2012. Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol 30:1232–1239. doi:10.1038/nbt.2432. PubMed DOI PMC
Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. doi:10.1126/science.1162986. PubMed DOI
Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465. doi:10.1038/nmeth.1459. PubMed DOI PMC
Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, Pratt MR, Rasolonjatovo IMJ, Reed MT, Rigatti R, Rodighiero C, Ross MT, Sabot A, Sankar SV, Scally A, Schroth GP, Smith ME, Smith VP, Spiridou A, Torrance PE, Tzonev SS, Vermaas EH, Walter K, Wu X, Zhang L, Alam MD, Anastasi C, et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59. doi:10.1038/nature07517. PubMed DOI PMC
Krebes J, Morgan RD, Bunk B, Spröer C, Luong K, Parusel R, Anton BP, König C, Josenhans C, Overmann J, Roberts RJ, Korlach J, Suerbaum S. 2014. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res 42:2415–2432. doi:10.1093/nar/gkt1201. PubMed DOI PMC
Furuta Y, Namba-Fukuyo H, Shibata TF, Nishiyama T, Shigenobu S, Suzuki Y, Sugano S, Hasebe M, Kobayashi I. 2014. Methylome diversification through changes in DNA methyltransferase sequence specificity. PLoS Genet 10:e1004272. doi:10.1371/journal.pgen.1004272. PubMed DOI PMC
Lluch-Senar M, Luong K, Lloréns-Rico V, Delgado J, Fang G, Spittle K, Clark TA, Schadt E, Turner SW, Korlach J, Serrano L. 2013. Comprehensive methylome characterization of Mycoplasma genitalium and Mycoplasma pneumoniae at single-base resolution. PLoS Genet 9:e1003191. doi:10.1371/journal.pgen.1003191. PubMed DOI PMC
Qiu W-G, Schutzer SE, Bruno JF, Attie O, Xu Y, Dunn JJ, Fraser CM, Casjens SR, Luft BJ. 2004. Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc Natl Acad Sci U S A 101:14150–14155. doi:10.1073/pnas.0402745101. PubMed DOI PMC
Eggers CH, Kimmel BJ, Bono JL, Elias AF, Rosa P, Samuels DS. 2001. Transduction by φBB-1, a bacteriophage of Borrelia burgdorferi. J Bacteriol 183:4771–4778. doi:10.1128/JB.183.16.4771-4778.2001. PubMed DOI PMC
Haven J, Vargas LC, Mongodin EF, Xue V, Hernandez Y, Pagan P, Fraser-Liggett CM, Schutzer SE, Luft BJ, Casjens SR, Qiu W-G. 2011. Pervasive recombination and sympatric genome diversification driven by frequency-dependent selection in Borrelia burgdorferi, the Lyme disease bacterium. Genetics 189:951–966. doi:10.1534/genetics.111.130773. PubMed DOI PMC
Rosa PA, Schwan T, Hogan D. 1992. Recombination between genes encoding major outer surface proteins A and B of Borrelia burgdorferi. Mol Microbiol 6:3031–3040. doi:10.1111/j.1365-2958.1992.tb01761.x. PubMed DOI
Stevenson B, Casjens S, Rosa P. 1998. Evidence of past recombination events among the genes encoding the Erp antigens of Borrelia burgdorferi. Microbiology (Reading) 144:1869–1879. doi:10.1099/00221287-144-7-1869. PubMed DOI
Livey I, Gibbs CP, Schuster R, Dorner F. 1995. Evidence for lateral transfer and recombination in OspC variation in Lyme disease Borrelia. Mol Microbiol 18:257–269. doi:10.1111/j.1365-2958.1995.mmi_18020257.x. PubMed DOI
Casselli T, Tourand Y, Scheidegger A, Arnold WK, Proulx A, Stevenson B, Brissette CA. 2018. DNA methylation by restriction modification systems affects the global transcriptome profile in Borrelia burgdorferi. J Bacteriol 200:e00395-18. doi:10.1128/JB.00395-18. PubMed DOI PMC
Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, Gwinn M, Dougherty B, Tomb JF, Fleischmann RD, Richardson D, Peterson J, Kerlavage AR, Quackenbush J, Salzberg S, Hanson M, van Vugt R, Palmer N, Adams MD, Gocayne J, Weidman J, Utterback T, Watthey L, McDonald L, Artiach P, Bowman C, Garland S, Fuji C, Cotton MD, Horst K, Roberts K, Hatch B, Smith HO, Venter JC. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586. doi:10.1038/37551. PubMed DOI
Elias AF, Stewart PE, Grimm D, Caimano MJ, Eggers CH, Tilly K. 2002. Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70:2139–2150. doi:10.1128/iai.70.4.2139-2150.2002. PubMed DOI PMC
Dulebohn DP, Bestor A, Rosa PA. 2013. Borrelia burgdorferi linear plasmid 28-3 confers a selective advantage in an experimental mouse-tick infection model. Infect Immun 81:2986–2996. doi:10.1128/IAI.00219-13. PubMed DOI PMC
Jewett MW, Byram R, Bestor A, Tilly K, Lawrence K, Burtnick MN, Gherardini F, Rosa PA. 2007. Genetic basis for retention of a critical virulence plasmid of Borrelia burgdorferi. Mol Microbiol 66:975–990. doi:10.1111/j.1365-2958.2007.05969.x. PubMed DOI PMC
Barthold SW, Moody KD, Terwilliger GA, Duray PH, Jacoby RO, Steere AC. 1988. Experimental Lyme arthritis in rats infected with Borrelia burgdorferi. J Infect Dis 157:842–846. doi:10.1093/infdis/157.4.842. PubMed DOI
Schwan TG, Schrumpf ME, Karstens RH, Clover JR, Wong J, Daugherty M, Struthers M, Rosa PA. 1993. Distribution and molecular analysis of Lyme disease spirochetes, Borrelia burgdorferi, isolated from ticks throughout California. J Clin Microbiol 31:3096–3108. doi:10.1128/JCM.31.12.3096-3108.1993. PubMed DOI PMC
Margolis N, Rosa PA. 1993. Regulation of expression of major outer surface proteins in Borrelia burgdorferi. Infect Immun 61:2207–2210. doi:10.1128/IAI.61.5.2207-2210.1993. PubMed DOI PMC
Preac-Mursic V, Wilske B, Schierz G. 1986. European Borrelia burgdorferi isolated from humans and ticks culture conditions and antibiotic susceptibility. Zentralbl Bakteriol Mikrobiol Hyg A 263:112–118. doi:10.1016/S0176-6724(86)80110-9. PubMed DOI
Canica MM, Nato F, du Merle L, Mazie JC, Baranton G, Postic D. 1993. Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis 25:441–448. doi:10.3109/00365549309008525. PubMed DOI
Casjens SR, Mongodin EF, Qiu D, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. 2012. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS One 7:e33280. doi:10.1371/journal.pone.0033280. PubMed DOI PMC
Grimm D, Elias AF, Tilly K, Rosa PA. 2003. Plasmid stability during in vitro propagation of Borrelia burgdorferi assessed at a clonal level. Infect Immun 71:3138–3145. doi:10.1128/iai.71.6.3138-3145.2003. PubMed DOI PMC
Roberts RJ, Vincze T, Posfai J, Macelis D. 2010. REBASE—a database for DNA restriction and modification: enzymes, genes and genomes. Nucleic Acids Res 38:D234–D236. doi:10.1093/nar/gkp874. PubMed DOI PMC
McLeay RC, Bailey TL. 2010. Motif enrichment analysis: a unified framework and an evaluation on ChIP data. BMC Bioinformatics 11:165. doi:10.1186/1471-2105-11-165. PubMed DOI PMC
Jorge DM, Mills RE, Lauring AS. 2015. CodonShuffle: a tool for generating and analyzing synonymously mutated sequences. Virus Evol 1:vev012. doi:10.1093/ve/vev012. PubMed DOI PMC
Barbour AG, Travinsky B. 2010. Evolution and distribution of the ospC gene, a transferable serotype determinant of Borrelia burgdorferi. mBio 1:e00153-10. doi:10.1128/mBio.00153-10. PubMed DOI PMC
Marconi RT, Samuels DS, Landry RK, Garon CF. 1994. Analysis of the distribution and molecular heterogeneity of the ospD gene among the Lyme disease spirochetes: evidence for lateral gene exchange. J Bacteriol 176:4572–4582. doi:10.1128/jb.176.15.4572-4582.1994. PubMed DOI PMC
Stevenson B, Miller JC. 2003. Intra- and interbacterial genetic exchange of Lyme disease spirochete erp genes generates sequence identity amidst diversity. J Mol Evol 57:309–324. doi:10.1007/s00239-003-2482-x. PubMed DOI
Schulte-Spechtel U, Fingerle V, Goettner G, Rogge S, Wilske B. 2006. Molecular analysis of decorin-binding protein A (DbpA) reveals five major groups among European Borrelia burgdorferi sensu lato strains with impact for the development of serological assays and indicates lateral gene transfer of the dbpA gene. Int J Med Microbiol 296(Suppl 40):250–266. doi:10.1016/j.ijmm.2006.01.006. PubMed DOI
Yang XF, Alani SM, Norgard MV. 2003. The response regulator Rrp2 is essential for the expression of major membrane lipoproteins in Borrelia burgdorferi. Proc Natl Acad Sci U S A 100:11001–11006. doi:10.1073/pnas.1834315100. PubMed DOI PMC
Caimano MJ, Iyer R, Eggers CH, Gonzalez C, Morton EA, Gilbert MA, Schwartz I, Radolf JD. 2007. Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle. Mol Microbiol 65:1193–1217. doi:10.1111/j.1365-2958.2007.05860.x. PubMed DOI PMC
Caimano MJ, Eggers CH, Hazlett KRO, Radolf JD. 2004. RpoS is not central to the general stress response in Borrelia burgdorferi but does control expression of one or more essential virulence determinants. Infect Immun 72:6433–6445. doi:10.1128/IAI.72.11.6433-6445.2004. PubMed DOI PMC
Caimano MJ, Eggers CH, Gonzalez CA, Radolf JD. 2005. Alternate sigma factor RpoS is required for the in vivo-specific repression of Borrelia burgdorferi plasmid lp54-borne ospA and lp6.6 genes. J Bacteriol 187:7845–7852. doi:10.1128/JB.187.22.7845-7852.2005. PubMed DOI PMC
Fisher MA, Grimm D, Henion AK, Elias AF, Stewart PE, Rosa PA, Gherardini FC. 2005. Borrelia burgdorferi σ(54) is required for mammalian infection and vector transmission but not for tick colonization. Proc Natl Acad Sci U S A 102:5162–5167. doi:10.1073/pnas.0408536102. PubMed DOI PMC
Brooks CS, Hefty PS, Jolliff SE, Akins DR. 2003. Global analysis of Borrelia burgdorferi genes regulated by mammalian host-specific signals. Infect Immun 71:3371–3383. doi:10.1128/iai.71.6.3371-3383.2003. PubMed DOI PMC
Hübner A, Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV. 2001. Expression of Borrelia burgdorferi OspC and DpbA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 98:12724–12729. doi:10.1073/pnas.231442498. PubMed DOI PMC
Chan K, Alter L, Barthold SW, Parveen N. 2015. Disruption of bbe02 by insertion of a luciferase gene increases transformation efficiency of Borrelia burgdorferi and allows live imaging in Lyme disease susceptible C3H mice. PLoS One 10:e0129532. doi:10.1371/journal.pone.0129532. PubMed DOI PMC
Bontemps-Gallo S, Lawrence KA, Richards CL, Gherardini FC. 2018. Genomic and phenotypic characterization of Borrelia afzelii BO23 and Borrelia garinii CIP 103362. PLoS One 13:e0199641. doi:10.1371/journal.pone.0199641. PubMed DOI PMC
Stewart PE, Rosa PA. 2017. Physiologic and genetic factors influencing the zoonotic cycle of Borrelia burgdorferi, p 63–82. In Adler B (ed), Spirochete biology: the post genomic era, vol 415. Springer, Cham, Switzerland. PubMed
Bohaliga GAR, Johnson WC, Taus NS, Hussein HE, Bastos RG, Suarez CE, O’Connor R, Ueti MW. 2018. Identification of a putative methyltransferase gene of Babesia bigemina as a novel molecular biomarker uniquely expressed in parasite tick stages. Parasit Vectors 11:480. doi:10.1186/s13071-018-3052-9. PubMed DOI PMC
Eggers CH, Gray CM, Preisig AM, Glenn DM, Pereira J, Ayers RW, Alshahrani M, Acabbo C, Becker MR, Bruenn KN, Cheung T, Jendras TM, Shepley AB, Moeller JT. 2016. Phage-mediated horizontal gene transfer of both prophage and heterologous DNA by ϕBB-1, a bacteriophage of Borrelia burgdorferi. FEMS Pathog Dis 74:ftw107. doi:10.1093/femspd/ftw107. PubMed DOI
Ouyang Z, Deka RK, Norgard MV. 2011. BosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanism. PLoS Pathog 7:e1001272. doi:10.1371/journal.ppat.1001272. PubMed DOI PMC
Ouyang Z, Zhou J, Brautigam CA, Deka R, Norgard MV. 2014. Identification of a core sequence for the binding of BosR to the rpoS promoter region in Borrelia burgdorferi. Microbiology (Reading) 160:851–862. doi:10.1099/mic.0.075655-0. PubMed DOI PMC
Riley SP, Bykowski T, Cooley AE, Burns LH, Babb K, Brissette CA, Bowman A, Rotondi M, Miller MC, DeMoll E, Lim K, Fried MG, Stevenson B. 2009. Borrelia burgdorferi EbfC defines a newly-identified widespread family of bacterial DNA-binding proteins. Nucleic Acids Res 37:1973–1983. doi:10.1093/nar/gkp027. PubMed DOI PMC
Chenail AM, Jutras BL, Adams CA, Burns LH, Bowman A, Verma A, Stevenson B. 2012. Borrelia burgdorferi cp32 BpaB modulates expression of the prophage NucP nuclease and SsbP single-stranded DNA-binding protein. J Bacteriol 194:4570–4578. doi:10.1128/JB.00661-12. PubMed DOI PMC
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641. doi:10.1093/nar/gkz268. PubMed DOI PMC
Stothard P. 2000. The Sequence Manipulation Suite: JavaScript programs for analyzing and formatting protein and DNA sequences. Biotechniques 28:1102–1104. doi:10.2144/00286ir01. PubMed DOI
Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi:10.1371/journal.pone.0009490. PubMed DOI PMC
Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282. doi:10.1093/bioinformatics/8.3.275. PubMed DOI
Stamatakis A. 2006. Phylogenetic models of rate heterogeneity: a high performance computing perspective, p 8. In Proceedings of 20th IEEE International Parallel & Distributed Processing Symposium. IEEE, Piscataway, NJ.
Shimodaira H, Hasegawa M. 1999. Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116. doi:10.1093/oxfordjournals.molbev.a026201. DOI
Letunic I, Bork P. 2019. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. doi:10.1093/nar/gkz239. PubMed DOI PMC
Barbour AG. 1984. Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525. PubMed PMC
Samuels DS, Mach KE, Garon CF. 1994. Genetic transformation of the Lyme disease agent Borrelia burgdorferi with coumarin-resistant gyrB. J Bacteriol 176:6045–6049. doi:10.1128/jb.176.19.6045-6049.1994. PubMed DOI PMC
Norris SJ, Howell JK, Odeh EA, Lin T, Gao L, Edmondson DG. 2011. High-throughput plasmid content analysis of Borrelia burgdorferi B31 by using Luminex multiplex technology. Appl Environ Microbiol 77:1483–1492. doi:10.1128/AEM.01877-10. PubMed DOI PMC
Bailey TL, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. doi:10.1093/nar/gkp335. PubMed DOI PMC
Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA. 2009. Circos: an information aesthetic for comparative genomics. Genome Res 19:1639–1645. doi:10.1101/gr.092759.109. PubMed DOI PMC
Wickham H. 2016. ggplot2: elegant graphics for data analysis, 1st ed, vol 8. Springer-Verlag, New York, NY.
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930. doi:10.1093/bioinformatics/btt656. PubMed DOI
Liao Y, Smyth GK, Shi W. 2019. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res 47:e47. doi:10.1093/nar/gkz114. PubMed DOI PMC
McCarthy DJ, Chen Y, Smyth GK. 2012. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297. doi:10.1093/nar/gks042. PubMed DOI PMC
Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. doi:10.1186/s13059-014-0550-8. PubMed DOI PMC
Savage CR, Jutras BL, Bestor A, Tilly K, Rosa P, Tourand Y, Stewart PE, Brissette CA, Stevenson B. 2018. Borrelia burgdorferi SpoVG DNA- and RNA-binding protein modulates the physiology of the Lyme disease spirochete. J Bacteriol 200:e00033-18. doi:10.1128/JB.00033-18. PubMed DOI PMC
Jutras BL, Savage CR, Arnold WK, Lethbridge KG, Carroll DW, Tilly K, Bestor A, Zhu H, Seshu J, Zückert WR, Stewart PE, Rosa PA, Brissette CA, Stevenson B. 2019. The Lyme disease spirochete’s BpuR DNA/RNA-binding protein is differentially expressed during the mammal-tick infectious cycle, which affects translation of the SodA superoxide dismutase. Mol Microbiol 112:973–991. doi:10.1111/mmi.14336. PubMed DOI PMC