• This record comes from PubMed

Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate

. 2021 Mar 15 ; 12 (15) : 5591-5598. [epub] 20210315

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic

Document type Journal Article

Plasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide-alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to -35 °C. We attribute the observed increase in the reaction efficiency to complete plasmon-induced annihilation of the reaction barrier, prolongation of plasmon lifetime, and decreased relaxation of plasmon-excited-states under cooling. Furthermore, control quenching experiments supported by theoretical calculations indicate that plasmon-mediated substrate excitation to an electronic triplet state may play the key role in plasmon-assisted chemical transformation. Last but not least, we demonstrated the possible applicability of plasmon assistance to biological systems by AAC coupling of biotin to gold nanoparticles performed at -35 °C.

See more in PubMed

Szczerbiński J. Gyr L. Kaeslin J. Zenobi R. Nano Lett. 2018;18:6740–6749. PubMed

Manjavacas A. Liu J. G. Kulkarni V. Nordlander P. ACS Nano. 2014;8:7630–7638. PubMed

Li M. Yuan P. Chen Q. Q. Lin L. H. Radjenovic P. M. He Y. L. Wang J. Y. Zhang F. L. Luo S. Y. Zheng N. F. Zhang S. J. Tian Z. Q. Li J. F. Anal. Chem. 2020;92:7146–7153. PubMed

Linic S. Christopher P. Ingram D. B. Nat. Mater. 2011;10:911–921. PubMed

Zhang H. Wei J. Zhang X. G. Zhang Y. J. Radjenovica P. M. Wu D. Y. Pan F. Tian Z. Q. Li J. F. Chem. 2020;6:689–702.

Christopher P. Xin H. Linic S. Nat. Chem. 2011;3:467–472. PubMed

Christopher P. Xin H. Marimuthu A. Linic S. Nat. Mater. 2012;11:1044–1050. PubMed

Wei H. Loeb S. K. Halas N. J. Kim J. H. Proc. Natl. Acad. Sci. U. S. A. 2020;117:15473–15481. PubMed PMC

Liu L. Ouyang S. Ye J. Angew. Chem. 2013;125:6821–6825.

Mukherjee S. Libisch F. Large N. Neumann O. Brown L. V. Cheng J. Lassiter J. B. Carter E. A. Nordlander P. Halas N. J. Nano Lett. 2013;13:240–247. PubMed

Zhang Y. He S. Guo W. Hu Y. Huang J. Mulcahy J. R. Wei W. D. Chem. Rev. 2018;118:2927–2954. PubMed

Wu B. Lee J. Mubeen S. Jun Y.-S. Stucky G. D. Moskovits M. Adv. Opt. Mater. 2016;4:1041–1046.

Wang R. Li J. Rigor J. Large N. El-Khoury P. Z. Rogachev A. Y. Kurouski D. J. Phys. Chem. C. 2020;124:2238–2244.

Christopher P. Linic S. ChemCatChem. 2010;2:78–83.

Kazuma E. Kim Y. Angew. Chem., Int. Ed. 2019;58:4800–4808. PubMed

Maksimov E. G. and Mofulevich G. P., Determination of the electron–phonon coupling constant from optical measurements, 1972

Young C. Y. Sham L. J. Phys. Rev. 1969;188:1108–1110.

Zhang Z. Zhang C. Zheng H. Xu H. Acc. Chem. Res. 2019;52:2506–2515. PubMed

Gellé A. Jin T. De La Garza L. Price G. D. Besteiro L. V. Moores A. Chem. Rev. 2020;120:986–1041. PubMed

Zou N. Chen G. Mao X. Shen H. Choudhary E. Zhou X. Chen P. ACS Nano. 2018;12:5570–5579. PubMed

Yu Y. Sundaresan V. Willets K. A. J. Phys. Chem. C. 2018;122:5040–5048.

Biener J. Biener M. M. Madix R. J. Friend C. M. ACS Catal. 2015;5:6263–6270.

Fujita T. Guan P. McKenna K. Lang X. Hirata A. Zhang L. Tokunaga T. Arai S. Yamamoto Y. Tanaka N. Ishikawa Y. Asao N. Yamamoto Y. Erlebacher J. Chen M. Nat. Mater. 2012;11:775–780. PubMed

Xu C. Su J. Xu X. Liu P. Zhao H. Tian F. Ding Y. J. Am. Chem. Soc. 2007;129:42–43. PubMed

Kosuda K. M. Wittstock A. Friend C. M. Bäumer M. Angew. Chem., Int. Ed. 2012;51:1698–1701. PubMed

Novello P. Varanasi C. V. Liu J. ACS Catal. 2019;9:578–586.

Gellé A. Jin T. De La Garza L. Price G. D. Besteiro L. V. Moores A. Chem. Rev. 2020;120:986–1041. PubMed

Zhou L. Swearer D. F. Zhang C. Robatjazi H. Zhao H. Henderson L. Dong L. Christopher P. Carter E. A. Nordlander P. Halas N. J. Science. 2018;362:69–72. PubMed

Sivan Y. Baraban J. Un I. W. Dubi Y. Science. 2019:364. PubMed

Guselnikova O. Postnikov P. Chehimi M. M. Kalachyovaa Y. Svorcik V. Lyutakov O. Langmuir. 2019;35:2023–2032. PubMed

Lutz J. F. Angew. Chem., Int. Ed. 2008;47:2182–2184. PubMed

Wang C. Ikhlef D. Kahlal S. Saillard J. Y. Astruc D. Metal-catalyzed azide–alkyne “click” reactions: Mechanistic overview and recent trends. Coord. Chem. Rev. 2016;316:1–20.

Schrader B. Moore D. S. Pure Appl. Chem. 1997;69:1451–1468.

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16 Revision A.03, 2016

Becke A. D. J. Chem. Phys. 1993;98:5648–5652.

Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. PubMed

Vosko S. H. Wilk L. Nusair M. Can. J. Phys. 1980;58:1200–1211.

Stephens P. J. Devlin F. J. Chabalowski C. F. Frisch M. J. J. Phys. Chem. 1994;98(45):11623–11627.

Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. PubMed

Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. PubMed

Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. PubMed

Marenich A. V. Cramer C. J. Truhlar D. G. J. Phys. Chem. B. 2009;113:6378–6396. PubMed

Adamo C. Jacquemin D. Chem. Soc. Rev. 2013;42:845–856. PubMed

Dubi Y. Un I. W. Sivan Y. Chem. Sci. 2020;11:5017–5027. PubMed PMC

Lee S. W. Hong J. W. Lee H. Wi D. H. Kim S. M. Han S. W. Park J. Y. Nanoscale. 2018;10:10835–10843. PubMed

Baffou G. Bordacchini I. Baldi A. Quidant R. Light: Sci. Appl. 2020;9:2047–7538. PubMed PMC

De Barros H. R. García I. Kuttner C. Zeballos N. Camargo P. H. C. De Torresi S. I. C. López-Gallego F. Liz-Marzán L. M. ACS Catal. 2021;11:414–423.

Itoh T. Asahi T. Masuhara H. Appl. Phys. Lett. 2001;79:1667–1669.

Terazima M. Yamauchi S. Hirota N. J. Phys. Chem. 1986;90:4294–4297.

Wu Z. G. Liao X. J. Yuan L. Wang Y. Zheng Y. X. Zuo J. L. Pan Y. Chem.–Eur. J. 2020;26:5694–5700. PubMed

Gong W. Das P. Samanta S. Xiong J. Pan W. Gu Z. Zhang J. Qu J. Yang Z. Chem. Commun. 2019;55:8695–8704. PubMed

Wittstock A. Zielasek V. Biener J. Friend C. M. Bäumer M. Science. 2010;327:319–322. PubMed

Le Y. Mehmood F. Lee S. Greeley J. Lee B. Seifert S. Winansl R. E. Elám W. Meyer R. J. Redfern P. C. Teschner D. Schlö’Gl R. Pellin M. J. Curtiss L. A. Vajda S. Science. 2010;328:224–228. PubMed

Lu J. Bravo-Suárez J. J. Takahashi A. Haruta M. Oyama S. T. J. Catal. 2005;232:85–95.

Gaebler A. Penno A. Kuerschner L. Thiele C. J. Lipid Res. 2016;57:1934–1947. PubMed PMC

Wu Y. Olsen L. B. Lau Y. H. Jensen C. H. Rossmann M. Baker Y. R. Sore H. F. Collins S. Spring D. R. ChemBioChem. 2016;17:689–692. PubMed PMC

Murale D. P. Hong S. C. Haque M. M. Lee J. S. Proteome Sci. 2017;15:1–34. PubMed PMC

Grison C. M. Burslem G. M. Miles J. A. Pilsl L. K. A. Yeo D. J. Imani Z. Warriner S. L. Webb M. E. Wilson A. J. Chem. Sci. 2017;8:5166–5171. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...