Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
34163774
PubMed Central
PMC8179579
DOI
10.1039/d0sc05898j
PII: d0sc05898j
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Plasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide-alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to -35 °C. We attribute the observed increase in the reaction efficiency to complete plasmon-induced annihilation of the reaction barrier, prolongation of plasmon lifetime, and decreased relaxation of plasmon-excited-states under cooling. Furthermore, control quenching experiments supported by theoretical calculations indicate that plasmon-mediated substrate excitation to an electronic triplet state may play the key role in plasmon-assisted chemical transformation. Last but not least, we demonstrated the possible applicability of plasmon assistance to biological systems by AAC coupling of biotin to gold nanoparticles performed at -35 °C.
See more in PubMed
Szczerbiński J. Gyr L. Kaeslin J. Zenobi R. Nano Lett. 2018;18:6740–6749. PubMed
Manjavacas A. Liu J. G. Kulkarni V. Nordlander P. ACS Nano. 2014;8:7630–7638. PubMed
Li M. Yuan P. Chen Q. Q. Lin L. H. Radjenovic P. M. He Y. L. Wang J. Y. Zhang F. L. Luo S. Y. Zheng N. F. Zhang S. J. Tian Z. Q. Li J. F. Anal. Chem. 2020;92:7146–7153. PubMed
Linic S. Christopher P. Ingram D. B. Nat. Mater. 2011;10:911–921. PubMed
Zhang H. Wei J. Zhang X. G. Zhang Y. J. Radjenovica P. M. Wu D. Y. Pan F. Tian Z. Q. Li J. F. Chem. 2020;6:689–702.
Christopher P. Xin H. Linic S. Nat. Chem. 2011;3:467–472. PubMed
Christopher P. Xin H. Marimuthu A. Linic S. Nat. Mater. 2012;11:1044–1050. PubMed
Wei H. Loeb S. K. Halas N. J. Kim J. H. Proc. Natl. Acad. Sci. U. S. A. 2020;117:15473–15481. PubMed PMC
Liu L. Ouyang S. Ye J. Angew. Chem. 2013;125:6821–6825.
Mukherjee S. Libisch F. Large N. Neumann O. Brown L. V. Cheng J. Lassiter J. B. Carter E. A. Nordlander P. Halas N. J. Nano Lett. 2013;13:240–247. PubMed
Zhang Y. He S. Guo W. Hu Y. Huang J. Mulcahy J. R. Wei W. D. Chem. Rev. 2018;118:2927–2954. PubMed
Wu B. Lee J. Mubeen S. Jun Y.-S. Stucky G. D. Moskovits M. Adv. Opt. Mater. 2016;4:1041–1046.
Wang R. Li J. Rigor J. Large N. El-Khoury P. Z. Rogachev A. Y. Kurouski D. J. Phys. Chem. C. 2020;124:2238–2244.
Christopher P. Linic S. ChemCatChem. 2010;2:78–83.
Kazuma E. Kim Y. Angew. Chem., Int. Ed. 2019;58:4800–4808. PubMed
Maksimov E. G. and Mofulevich G. P., Determination of the electron–phonon coupling constant from optical measurements, 1972
Young C. Y. Sham L. J. Phys. Rev. 1969;188:1108–1110.
Zhang Z. Zhang C. Zheng H. Xu H. Acc. Chem. Res. 2019;52:2506–2515. PubMed
Gellé A. Jin T. De La Garza L. Price G. D. Besteiro L. V. Moores A. Chem. Rev. 2020;120:986–1041. PubMed
Zou N. Chen G. Mao X. Shen H. Choudhary E. Zhou X. Chen P. ACS Nano. 2018;12:5570–5579. PubMed
Yu Y. Sundaresan V. Willets K. A. J. Phys. Chem. C. 2018;122:5040–5048.
Biener J. Biener M. M. Madix R. J. Friend C. M. ACS Catal. 2015;5:6263–6270.
Fujita T. Guan P. McKenna K. Lang X. Hirata A. Zhang L. Tokunaga T. Arai S. Yamamoto Y. Tanaka N. Ishikawa Y. Asao N. Yamamoto Y. Erlebacher J. Chen M. Nat. Mater. 2012;11:775–780. PubMed
Xu C. Su J. Xu X. Liu P. Zhao H. Tian F. Ding Y. J. Am. Chem. Soc. 2007;129:42–43. PubMed
Kosuda K. M. Wittstock A. Friend C. M. Bäumer M. Angew. Chem., Int. Ed. 2012;51:1698–1701. PubMed
Novello P. Varanasi C. V. Liu J. ACS Catal. 2019;9:578–586.
Gellé A. Jin T. De La Garza L. Price G. D. Besteiro L. V. Moores A. Chem. Rev. 2020;120:986–1041. PubMed
Zhou L. Swearer D. F. Zhang C. Robatjazi H. Zhao H. Henderson L. Dong L. Christopher P. Carter E. A. Nordlander P. Halas N. J. Science. 2018;362:69–72. PubMed
Sivan Y. Baraban J. Un I. W. Dubi Y. Science. 2019:364. PubMed
Guselnikova O. Postnikov P. Chehimi M. M. Kalachyovaa Y. Svorcik V. Lyutakov O. Langmuir. 2019;35:2023–2032. PubMed
Lutz J. F. Angew. Chem., Int. Ed. 2008;47:2182–2184. PubMed
Wang C. Ikhlef D. Kahlal S. Saillard J. Y. Astruc D. Metal-catalyzed azide–alkyne “click” reactions: Mechanistic overview and recent trends. Coord. Chem. Rev. 2016;316:1–20.
Schrader B. Moore D. S. Pure Appl. Chem. 1997;69:1451–1468.
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B., Fox D. J., Gaussian 16 Revision A.03, 2016
Becke A. D. J. Chem. Phys. 1993;98:5648–5652.
Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. PubMed
Vosko S. H. Wilk L. Nusair M. Can. J. Phys. 1980;58:1200–1211.
Stephens P. J. Devlin F. J. Chabalowski C. F. Frisch M. J. J. Phys. Chem. 1994;98(45):11623–11627.
Lee C. Yang W. Parr R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988;37:785–789. PubMed
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. PubMed
Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. PubMed
Marenich A. V. Cramer C. J. Truhlar D. G. J. Phys. Chem. B. 2009;113:6378–6396. PubMed
Adamo C. Jacquemin D. Chem. Soc. Rev. 2013;42:845–856. PubMed
Dubi Y. Un I. W. Sivan Y. Chem. Sci. 2020;11:5017–5027. PubMed PMC
Lee S. W. Hong J. W. Lee H. Wi D. H. Kim S. M. Han S. W. Park J. Y. Nanoscale. 2018;10:10835–10843. PubMed
Baffou G. Bordacchini I. Baldi A. Quidant R. Light: Sci. Appl. 2020;9:2047–7538. PubMed PMC
De Barros H. R. García I. Kuttner C. Zeballos N. Camargo P. H. C. De Torresi S. I. C. López-Gallego F. Liz-Marzán L. M. ACS Catal. 2021;11:414–423.
Itoh T. Asahi T. Masuhara H. Appl. Phys. Lett. 2001;79:1667–1669.
Terazima M. Yamauchi S. Hirota N. J. Phys. Chem. 1986;90:4294–4297.
Wu Z. G. Liao X. J. Yuan L. Wang Y. Zheng Y. X. Zuo J. L. Pan Y. Chem.–Eur. J. 2020;26:5694–5700. PubMed
Gong W. Das P. Samanta S. Xiong J. Pan W. Gu Z. Zhang J. Qu J. Yang Z. Chem. Commun. 2019;55:8695–8704. PubMed
Wittstock A. Zielasek V. Biener J. Friend C. M. Bäumer M. Science. 2010;327:319–322. PubMed
Le Y. Mehmood F. Lee S. Greeley J. Lee B. Seifert S. Winansl R. E. Elám W. Meyer R. J. Redfern P. C. Teschner D. Schlö’Gl R. Pellin M. J. Curtiss L. A. Vajda S. Science. 2010;328:224–228. PubMed
Lu J. Bravo-Suárez J. J. Takahashi A. Haruta M. Oyama S. T. J. Catal. 2005;232:85–95.
Gaebler A. Penno A. Kuerschner L. Thiele C. J. Lipid Res. 2016;57:1934–1947. PubMed PMC
Wu Y. Olsen L. B. Lau Y. H. Jensen C. H. Rossmann M. Baker Y. R. Sore H. F. Collins S. Spring D. R. ChemBioChem. 2016;17:689–692. PubMed PMC
Murale D. P. Hong S. C. Haque M. M. Lee J. S. Proteome Sci. 2017;15:1–34. PubMed PMC
Grison C. M. Burslem G. M. Miles J. A. Pilsl L. K. A. Yeo D. J. Imani Z. Warriner S. L. Webb M. E. Wilson A. J. Chem. Sci. 2017;8:5166–5171. PubMed PMC