Time lapse synchrotron IR chemical imaging for observing the acclimation of a single algal cell to CO2 treatment

. 2021 Jun 24 ; 11 (1) : 13246. [epub] 20210624

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid34168226
Odkazy

PubMed 34168226
PubMed Central PMC8225881
DOI 10.1038/s41598-021-92657-3
PII: 10.1038/s41598-021-92657-3
Knihovny.cz E-zdroje

Algae are the main primary producers in aquatic environments and therefore of fundamental importance for the global ecosystem. Mid-infrared (IR) microspectroscopy is a non-invasive tool that allows in principle studying chemical composition on a single-cell level. For a long time, however, mid-infrared (IR) imaging of living algal cells in an aqueous environment has been a challenge due to the strong IR absorption of water. In this study, we employed multi-beam synchrotron radiation to measure time-resolved IR hyperspectral images of individual Thalassiosira weissflogii cells in water in the course of acclimation to an abrupt change of CO2 availability (from 390 to 5000 ppm and vice versa) over 75 min. We used a previously developed algorithm to correct sinusoidal interference fringes from IR hyperspectral imaging data. After preprocessing and fringe correction of the hyperspectral data, principal component analysis (PCA) was performed to assess the spatial distribution of organic pools within the algal cells. Through the analysis of 200,000 spectra, we were able to identify compositional modifications associated with CO2 treatment. PCA revealed changes in the carbohydrate pool (1200-950 cm[Formula: see text]), lipids (1740, 2852, 2922 cm[Formula: see text]), and nucleic acid (1160 and 1201 cm[Formula: see text]) as the major response of exposure to elevated CO2 concentrations. Our results show a local metabolism response to this external perturbation.

Zobrazit více v PubMed

Holman HYN, Bechtel HA, Hao Z, Martin MC. Synchrotron IR spectromicroscopy: Chemistry of living cells. Anal. Chem. 2010;82:8757–8765. doi: 10.1021/ac100991d. PubMed DOI

Venuleo M, Giordano M. Intraspecific interactions between algae with different nutritional histories. J. Phycol. 2018;54:423–427. doi: 10.1111/jpy.12642. PubMed DOI

Vaccari L, Birarda G, Businaro L, Pacor S, Grenci G. Infrared microspectroscopy of live cells in microfluidic devices (MD-IRMS): Toward a powerful label-free cell-based assay. Anal. Chem. 2012;84:4768–4775. doi: 10.1021/ac300313x. PubMed DOI

Nasse MJ, et al. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat. Methods. 2011;8:413–416. doi: 10.1038/nmeth.1585. PubMed DOI PMC

Doherty J, Cinque G, Gardner P. Single-cell analysis using Fourier transform infrared microspectroscopy. Appl. Spectrosc. Rev. 2017;52:560–587. doi: 10.1080/05704928.2016.1250214. DOI

Loutherback K, Birarda G, Chen L, Holman H-Y. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems. Protein Pept. Lett. 2016;23:273–282. doi: 10.2174/0929866523666160106154035. PubMed DOI PMC

Miller LM, et al. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with PubMed DOI

Didonna A, Vaccari L, Bek A, Legname G. Infrared microspectroscopy: A multiple-screening platform for investigating single-cell biochemical perturbations upon prion infection. ACS Chem. Neurosci. 2011;2:160–174. doi: 10.1021/cn1000952. PubMed DOI PMC

Grenci G, et al. Optimization of microfluidic systems for IRMS long term measurement of living cells. Microelectron. Eng. 2012;98:698–702. doi: 10.1016/j.mee.2012.05.049. DOI

Lipiec E, et al. A new approach to studying the effects of ionising radiation on single cells using FTIR synchrotron microspectroscopy. Radiat. Phys. Chem. 2013;93:135–141. doi: 10.1016/j.radphyschem.2013.03.037. DOI

Raven JA, Beardall J, Giordano M. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 2014;121:111–124. doi: 10.1007/s11120-013-9962-7. PubMed DOI

Giordano M, Ratti S. The biomass quality of algae used for CO2 sequestration is highly species-specific and may vary over time. J. Appl. Phycol. 2013;25:1431–1434. doi: 10.1007/s10811-012-9966-2. DOI

Giordano M, Palmucci M. Is cell composition related to the phylogenesis of microalgae? An investigation using hierarchical cluster analysis of Fourier transform infrared spectra of whole cells. Environ. Exp. Bot. 2012;75:220–224. doi: 10.1016/j.envexpbot.2011.07.005. DOI

Norici A, Bazzoni AM, Pugnetti A, Raven JA, Giordano M. Impact of irradiance on the c allocation in the coastal marine diatom skeletonema marinoi sarno and zingone*. Plant Cell Environ. 2011;34:1666–1677. doi: 10.1111/j.1365-3040.2011.02362.x. PubMed DOI

Memmola F, Mukherjee B, Moroney JV, Giordano M. Carbon allocation and element composition in four chlamydomonas mutants defective in genes related to the co2 concentrating mechanism. Photosynth. Res. 2014;121:201–211. doi: 10.1007/s11120-014-0005-9. PubMed DOI

Palmucci M, Ratti S, Giordano M. Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability: A Fourier transform infrared spectroscopy approach. J. Phycol. 2011;47:313–323. doi: 10.1111/j.1529-8817.2011.00963.x. PubMed DOI

Sterner RW, Elser JJ. The Biology of Elements from Molecules to Biosphere. University Press; 2002.

Kuimova MK, Chan KLA, Kazarian SG. Chemical imaging of live cancer cells in the natural aqueous environment. Appl. Spectrosc. 2009;63:164–71. doi: 10.1366/000370209787391969. PubMed DOI

Miyamoto K-I, et al. In situ observation of a cell adhesion and metabolism using surface infrared spectroscopy. Cytotechnology. 2007;55:143–9. doi: 10.1007/s10616-007-9111-2. PubMed DOI PMC

Chittur KK. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials. 1998;19:357–369. doi: 10.1016/S0142-9612(97)00223-8. PubMed DOI

Wieliczka DM, Weng S, Querry MR. Wedge shaped cell for highly absorbent liquids: Infrared optical constants of water. Appl. Opt. 1989;28:1714–1719. doi: 10.1364/AO.28.001714. PubMed DOI

Nasse MJ, Ratti S, Giordano M, Hirschmugl CJ. Demountable liquid/flow cell for<I>in vivo</I> infrared microspectroscopy of biological specimens. Appl. Spectrosc. 2009;63:1181–1186. doi: 10.1366/000370209789553101. PubMed DOI

Hirschfeld T, Mantz AW. Elimination of thin film infrared channel spectra in Fourier transform infrared spectroscopy. Appl. Spectrosc. 1976;30:552–553. doi: 10.1366/000370276774456813. DOI

Hirschfeld T. New trends in the application of Fourier transform infrared spectroscopy to analytical chemistry. Appl. Opt. 1978;17:1400–1412. doi: 10.1364/AO.17.001400. PubMed DOI

Clark FRS, Moffatt DJ. The elimination of interference fringes from infrared spectra. Appl. Spectrosc. 1978;32:547–549. doi: 10.1366/000370278774330685. DOI

Pistorius AM, DeGrip WJ. Deconvolution as a tool to remove fringes from an FT-IR spectrum. Vib. Spectrosc. 2004;36:89–95. doi: 10.1016/J.VIBSPEC.2004.04.001. DOI

Konevskikh T, Ponossov A, Blümel R, Lukacs R, Kohler A. Fringes in FTIR spectroscopy revisited: Understanding and modelling fringes in infrared spectroscopy of thin films. Analyst. 2015;140:3969–3980. doi: 10.1039/C4AN02343A. PubMed DOI

Azarfar G, et al. Estimating and correcting interference fringes in infrared spectra in infrared hyperspectral imaging. Analyst. 2018;143:4674–4683. doi: 10.1039/C8AN00093J. PubMed DOI

Ramachandra TV, Durga Madhab M, Shilpi S, Joshi NV. Algal biofuel from urban wastewater in India. Scope and challenges. Renew. Sustain. Energy Rev. 2013;21:767–777. doi: 10.1016/j.rser.2012.12.029. DOI

Dilek YD, et al. Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr. J. Biotech. 2012;11:3817–3824. doi: 10.5897/AJB11.1863. DOI

Heraud P, Wood BR, Tobin MJ, Beardall J, McNaughton D. Mapping of nutrient-induced biochemical changes in living algal cells using synchrotron infrared microspectroscopy. FEMS Microbiol. Lett. 2005;249:219–225. doi: 10.1016/j.femsle.2005.06.021. PubMed DOI

Mahapatra DM, Ramachandra TV. Algal biofuel: Bountiful lipid from Chlorococcum sp. proliferating in municipal wastewater. Curr. Sci. 2013;105:47–55.

Barry RM, Gitai Z. Self-assembling enzymes and the origins of the cytoskeleton. Curr. Opin. Microbiol. 2011;14:704–711. doi: 10.1016/j.mib.2011.09.015. PubMed DOI PMC

Matsuda Y, Hara T, Colman B. Regulation of the induction of bicarbonate uptake by dissolved co2 in the marine diatom, Phaeodactylum tricornutum. Plant, Cell Environ. 2001;24:611–620. doi: 10.1046/j.1365-3040.2001.00702.x. DOI

Radchenko IG, Il’yash LV. Growth and photosynthetic activity of diatom Thalassiosira weissflogii at decreasing salinity. Biol. Bull. 2006;33:1608–3059. doi: 10.1134/S106235900603006X. PubMed DOI

Fanesi A, Raven JA, Giordano M. Growth rate affects the responses of the green alga Tetraselmis suecica to external perturbations. Plant Cell Environ. 2014;37:512–519. doi: 10.1111/pce.12176. PubMed DOI

Hamant O, et al. Developmental patterning by mechanical signals in arabidopsis. Science. 2008;322:1650–1655. doi: 10.1126/science.1165594. PubMed DOI

Muzzey D, van Oudenaarden A. Quantitative time-lapse fluorescence microscopy in single cells. Annu. Rev. Cell Dev. Biol. 2009;25:301–327. doi: 10.1146/annurev.cellbio.042308.113408. PubMed DOI PMC

Brembu T, Mühlroth A, Alipanah L, Bones AM. The effects of phosphorus limitation on carbon metabolism in diatoms. Philos. Trans. R. Soc. B Biol. Sci. 2017;372:20160406. doi: 10.1098/rstb.2016.0406. PubMed DOI PMC

Vaulot D, Olson RJ, Merkel S, Chisholm SW. Cell-cycle response to nutrient starvation in two phytoplankton species, Thalassiosira weissflogii and Hymenomonas carterae. Mar. Biol. 1987;95:625–630. doi: 10.1007/BF00393106. DOI

Hirschmugl CJ, Gough KM. Fourier transform infrared spectrochemical imaging: Review of design and applications with a focal plane array and multiple beam synchrotron radiation source. Appl. Spectrosc. 2012;66:475–491. doi: 10.1366/12-06629. PubMed DOI

Gonzalez RC, Woods RE. Digital Image Processing. 3. Pearson Prentice Hall; 2008.

Shlens, J. A tutorial on principal component analysis. arXiv:1404.1100 (2014).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...