Time lapse synchrotron IR chemical imaging for observing the acclimation of a single algal cell to CO2 treatment
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
34168226
PubMed Central
PMC8225881
DOI
10.1038/s41598-021-92657-3
PII: 10.1038/s41598-021-92657-3
Knihovny.cz E-zdroje
- MeSH
- aklimatizace MeSH
- analýza jednotlivých buněk metody MeSH
- časosběrné zobrazování MeSH
- oxid uhličitý farmakologie MeSH
- rozsivky účinky léků metabolismus MeSH
- spektrofotometrie infračervená MeSH
- synchrotrony MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- oxid uhličitý MeSH
Algae are the main primary producers in aquatic environments and therefore of fundamental importance for the global ecosystem. Mid-infrared (IR) microspectroscopy is a non-invasive tool that allows in principle studying chemical composition on a single-cell level. For a long time, however, mid-infrared (IR) imaging of living algal cells in an aqueous environment has been a challenge due to the strong IR absorption of water. In this study, we employed multi-beam synchrotron radiation to measure time-resolved IR hyperspectral images of individual Thalassiosira weissflogii cells in water in the course of acclimation to an abrupt change of CO2 availability (from 390 to 5000 ppm and vice versa) over 75 min. We used a previously developed algorithm to correct sinusoidal interference fringes from IR hyperspectral imaging data. After preprocessing and fringe correction of the hyperspectral data, principal component analysis (PCA) was performed to assess the spatial distribution of organic pools within the algal cells. Through the analysis of 200,000 spectra, we were able to identify compositional modifications associated with CO2 treatment. PCA revealed changes in the carbohydrate pool (1200-950 cm[Formula: see text]), lipids (1740, 2852, 2922 cm[Formula: see text]), and nucleic acid (1160 and 1201 cm[Formula: see text]) as the major response of exposure to elevated CO2 concentrations. Our results show a local metabolism response to this external perturbation.
Alcon Laboratories Inc Belmont CA 94002 USA
Beckman Institute University of Illinois Urbana Champaign Urbana 61801 USA
Department of Cell Biology and Molecular Genetics University of Maryland College Park MD 20742 USA
Department of Physics University of Wisconsin Milwaukee Milwaukee WI 53211 USA
Dipartimento Scienze della Vita e dell'Ambiente Universita' Politecnica delle Marche Ancona AN Italy
Institute of Microbiology Academy of Sciences of the Czech Republic Trebon Czech Republic
Zobrazit více v PubMed
Holman HYN, Bechtel HA, Hao Z, Martin MC. Synchrotron IR spectromicroscopy: Chemistry of living cells. Anal. Chem. 2010;82:8757–8765. doi: 10.1021/ac100991d. PubMed DOI
Venuleo M, Giordano M. Intraspecific interactions between algae with different nutritional histories. J. Phycol. 2018;54:423–427. doi: 10.1111/jpy.12642. PubMed DOI
Vaccari L, Birarda G, Businaro L, Pacor S, Grenci G. Infrared microspectroscopy of live cells in microfluidic devices (MD-IRMS): Toward a powerful label-free cell-based assay. Anal. Chem. 2012;84:4768–4775. doi: 10.1021/ac300313x. PubMed DOI
Nasse MJ, et al. High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat. Methods. 2011;8:413–416. doi: 10.1038/nmeth.1585. PubMed DOI PMC
Doherty J, Cinque G, Gardner P. Single-cell analysis using Fourier transform infrared microspectroscopy. Appl. Spectrosc. Rev. 2017;52:560–587. doi: 10.1080/05704928.2016.1250214. DOI
Loutherback K, Birarda G, Chen L, Holman H-Y. Microfluidic approaches to synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy of living biosystems. Protein Pept. Lett. 2016;23:273–282. doi: 10.2174/0929866523666160106154035. PubMed DOI PMC
Miller LM, et al. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with PubMed DOI
Didonna A, Vaccari L, Bek A, Legname G. Infrared microspectroscopy: A multiple-screening platform for investigating single-cell biochemical perturbations upon prion infection. ACS Chem. Neurosci. 2011;2:160–174. doi: 10.1021/cn1000952. PubMed DOI PMC
Grenci G, et al. Optimization of microfluidic systems for IRMS long term measurement of living cells. Microelectron. Eng. 2012;98:698–702. doi: 10.1016/j.mee.2012.05.049. DOI
Lipiec E, et al. A new approach to studying the effects of ionising radiation on single cells using FTIR synchrotron microspectroscopy. Radiat. Phys. Chem. 2013;93:135–141. doi: 10.1016/j.radphyschem.2013.03.037. DOI
Raven JA, Beardall J, Giordano M. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 2014;121:111–124. doi: 10.1007/s11120-013-9962-7. PubMed DOI
Giordano M, Ratti S. The biomass quality of algae used for CO2 sequestration is highly species-specific and may vary over time. J. Appl. Phycol. 2013;25:1431–1434. doi: 10.1007/s10811-012-9966-2. DOI
Giordano M, Palmucci M. Is cell composition related to the phylogenesis of microalgae? An investigation using hierarchical cluster analysis of Fourier transform infrared spectra of whole cells. Environ. Exp. Bot. 2012;75:220–224. doi: 10.1016/j.envexpbot.2011.07.005. DOI
Norici A, Bazzoni AM, Pugnetti A, Raven JA, Giordano M. Impact of irradiance on the c allocation in the coastal marine diatom skeletonema marinoi sarno and zingone*. Plant Cell Environ. 2011;34:1666–1677. doi: 10.1111/j.1365-3040.2011.02362.x. PubMed DOI
Memmola F, Mukherjee B, Moroney JV, Giordano M. Carbon allocation and element composition in four chlamydomonas mutants defective in genes related to the co2 concentrating mechanism. Photosynth. Res. 2014;121:201–211. doi: 10.1007/s11120-014-0005-9. PubMed DOI
Palmucci M, Ratti S, Giordano M. Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability: A Fourier transform infrared spectroscopy approach. J. Phycol. 2011;47:313–323. doi: 10.1111/j.1529-8817.2011.00963.x. PubMed DOI
Sterner RW, Elser JJ. The Biology of Elements from Molecules to Biosphere. University Press; 2002.
Kuimova MK, Chan KLA, Kazarian SG. Chemical imaging of live cancer cells in the natural aqueous environment. Appl. Spectrosc. 2009;63:164–71. doi: 10.1366/000370209787391969. PubMed DOI
Miyamoto K-I, et al. In situ observation of a cell adhesion and metabolism using surface infrared spectroscopy. Cytotechnology. 2007;55:143–9. doi: 10.1007/s10616-007-9111-2. PubMed DOI PMC
Chittur KK. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials. 1998;19:357–369. doi: 10.1016/S0142-9612(97)00223-8. PubMed DOI
Wieliczka DM, Weng S, Querry MR. Wedge shaped cell for highly absorbent liquids: Infrared optical constants of water. Appl. Opt. 1989;28:1714–1719. doi: 10.1364/AO.28.001714. PubMed DOI
Nasse MJ, Ratti S, Giordano M, Hirschmugl CJ. Demountable liquid/flow cell for<I>in vivo</I> infrared microspectroscopy of biological specimens. Appl. Spectrosc. 2009;63:1181–1186. doi: 10.1366/000370209789553101. PubMed DOI
Hirschfeld T, Mantz AW. Elimination of thin film infrared channel spectra in Fourier transform infrared spectroscopy. Appl. Spectrosc. 1976;30:552–553. doi: 10.1366/000370276774456813. DOI
Hirschfeld T. New trends in the application of Fourier transform infrared spectroscopy to analytical chemistry. Appl. Opt. 1978;17:1400–1412. doi: 10.1364/AO.17.001400. PubMed DOI
Clark FRS, Moffatt DJ. The elimination of interference fringes from infrared spectra. Appl. Spectrosc. 1978;32:547–549. doi: 10.1366/000370278774330685. DOI
Pistorius AM, DeGrip WJ. Deconvolution as a tool to remove fringes from an FT-IR spectrum. Vib. Spectrosc. 2004;36:89–95. doi: 10.1016/J.VIBSPEC.2004.04.001. DOI
Konevskikh T, Ponossov A, Blümel R, Lukacs R, Kohler A. Fringes in FTIR spectroscopy revisited: Understanding and modelling fringes in infrared spectroscopy of thin films. Analyst. 2015;140:3969–3980. doi: 10.1039/C4AN02343A. PubMed DOI
Azarfar G, et al. Estimating and correcting interference fringes in infrared spectra in infrared hyperspectral imaging. Analyst. 2018;143:4674–4683. doi: 10.1039/C8AN00093J. PubMed DOI
Ramachandra TV, Durga Madhab M, Shilpi S, Joshi NV. Algal biofuel from urban wastewater in India. Scope and challenges. Renew. Sustain. Energy Rev. 2013;21:767–777. doi: 10.1016/j.rser.2012.12.029. DOI
Dilek YD, et al. Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr. J. Biotech. 2012;11:3817–3824. doi: 10.5897/AJB11.1863. DOI
Heraud P, Wood BR, Tobin MJ, Beardall J, McNaughton D. Mapping of nutrient-induced biochemical changes in living algal cells using synchrotron infrared microspectroscopy. FEMS Microbiol. Lett. 2005;249:219–225. doi: 10.1016/j.femsle.2005.06.021. PubMed DOI
Mahapatra DM, Ramachandra TV. Algal biofuel: Bountiful lipid from Chlorococcum sp. proliferating in municipal wastewater. Curr. Sci. 2013;105:47–55.
Barry RM, Gitai Z. Self-assembling enzymes and the origins of the cytoskeleton. Curr. Opin. Microbiol. 2011;14:704–711. doi: 10.1016/j.mib.2011.09.015. PubMed DOI PMC
Matsuda Y, Hara T, Colman B. Regulation of the induction of bicarbonate uptake by dissolved co2 in the marine diatom, Phaeodactylum tricornutum. Plant, Cell Environ. 2001;24:611–620. doi: 10.1046/j.1365-3040.2001.00702.x. DOI
Radchenko IG, Il’yash LV. Growth and photosynthetic activity of diatom Thalassiosira weissflogii at decreasing salinity. Biol. Bull. 2006;33:1608–3059. doi: 10.1134/S106235900603006X. PubMed DOI
Fanesi A, Raven JA, Giordano M. Growth rate affects the responses of the green alga Tetraselmis suecica to external perturbations. Plant Cell Environ. 2014;37:512–519. doi: 10.1111/pce.12176. PubMed DOI
Hamant O, et al. Developmental patterning by mechanical signals in arabidopsis. Science. 2008;322:1650–1655. doi: 10.1126/science.1165594. PubMed DOI
Muzzey D, van Oudenaarden A. Quantitative time-lapse fluorescence microscopy in single cells. Annu. Rev. Cell Dev. Biol. 2009;25:301–327. doi: 10.1146/annurev.cellbio.042308.113408. PubMed DOI PMC
Brembu T, Mühlroth A, Alipanah L, Bones AM. The effects of phosphorus limitation on carbon metabolism in diatoms. Philos. Trans. R. Soc. B Biol. Sci. 2017;372:20160406. doi: 10.1098/rstb.2016.0406. PubMed DOI PMC
Vaulot D, Olson RJ, Merkel S, Chisholm SW. Cell-cycle response to nutrient starvation in two phytoplankton species, Thalassiosira weissflogii and Hymenomonas carterae. Mar. Biol. 1987;95:625–630. doi: 10.1007/BF00393106. DOI
Hirschmugl CJ, Gough KM. Fourier transform infrared spectrochemical imaging: Review of design and applications with a focal plane array and multiple beam synchrotron radiation source. Appl. Spectrosc. 2012;66:475–491. doi: 10.1366/12-06629. PubMed DOI
Gonzalez RC, Woods RE. Digital Image Processing. 3. Pearson Prentice Hall; 2008.
Shlens, J. A tutorial on principal component analysis. arXiv:1404.1100 (2014).