Epigallocatechin gallate and Lactobacillus plantarum culture supernatants exert bactericidal activity and reduce biofilm formation in Clostridium perfringens
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34170482
DOI
10.1007/s12223-021-00891-z
PII: 10.1007/s12223-021-00891-z
Knihovny.cz E-zdroje
- MeSH
- biofilmy MeSH
- Clostridium perfringens * účinky léků genetika MeSH
- katechin analogy a deriváty farmakologie MeSH
- kultivační média speciální * farmakologie MeSH
- Lactobacillus plantarum * metabolismus MeSH
- regulace genové exprese u bakterií účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- epigallocatechin gallate MeSH Prohlížeč
- katechin MeSH
- kultivační média speciální * MeSH
Clostridium perfringens forms biofilms and spores that are a source of food contamination. In this study, the antibacterial activities of Lactobacillus plantarum culture supernatants (LP-S), LP-S fractions, and the plant-derived compound epigallocatechin gallate (EG) were evaluated. Specifically, their effects on the viability and biofilm-forming ability of C. perfringens were assessed. Moreover, the expression of quorum sensing-regulated genes associated with the pathogenesis of this microorganism and that of genes involved in biofilm formation was also investigated. The results showed that both EG and the LP-S exerted bactericidal activity against all C. perfringens strains tested. The minimal bactericidal concentration (MBC) of EG was 75 µg/mL for all strains but ranged from 61 to 121 µg of total protein per mL for LP-S. EG exerted only minor effects on biofilm formation, whereas LP-S, particularly its 10 and 30 K fractions, significantly reduced the biofilm-forming ability of all the strains. The antibiofilm activity of LP-S was lost following preincubation with proteases, suggesting that it was mediated by a proteinaceous molecule. The treatment of C. perfringens with either EG or LP-S did not change the transcript levels of two CpAL (C. perfringens quorum-sensing Agr-like system)-related genes, agrB and agrD, which are known to be involved in the regulation of biofilms, suggesting that LP-S exerted its biofilm inhibitory activity downstream of CpAL signaling. In summary, we demonstrated the bactericidal activity of EG and LP-S against C. perfringens and antibiofilm activity of LP-S at a subinhibitory dose. Our results suggested that these compounds can be further explored for food safety applications to control agents such as C. perfringens.
Zobrazit více v PubMed
Barbosa MS, Todorov SD, Belguesmia Y, Choiset Y, Rabesona H, Ivanova IV, Chobert JM, Haertlé T, Franco BDGM (2014) Purification and characterization of the bacteriocin produced by Lactobacillus sakei MBSa1 isolated from Brazilian salami. J Appl Microbiol 116:1195–1208. https://doi.org/10.1111/jam.12438 PubMed DOI
Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée J-Y, Ghigo J-M, Beloin C (2013) Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9:e1003144–e1003144. https://doi.org/10.1371/journal.pgen.1003144 PubMed DOI PMC
Brackman G, Defoirdt T, Miyamoto C, Bossier P, Van Calenbergh S, Nelis H, Coenye T (2008) Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR. BMC Microbiol 8:149–149 DOI
Charlebois A, Jacques M, Archambault M (2014) Biofilm formation of Clostridium perfringens and its exposure to low-dose antimicrobials. Front Microbiol 5:183. https://doi.org/10.3389/fmicb.2014.00183 PubMed DOI PMC
Charlebois A, Jacques M, Archambault M (2016) Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells. Avian Pathol 45:593–601. https://doi.org/10.1080/03079457.2016.1189512 PubMed DOI
Charlebois A, Jacques M, Boulianne M, Archambault M (2017) Tolerance of Clostridium perfringens biofilms to disinfectants commonly used inthe food industry. Food Microbiol 62. 32-38. https://doi.org/10.1016/j.fm.2016.09.009
CLSI (2018) Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; M11 Standard for antimicrobial susceptibility testing for anaerobicbacteria. Clinical and Laboratory Standards Institute, Wayne. PA.
Cooksley CM, Davis IJ, Winzer K, Chan WC, Peck MW, Minton NP (2010) Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic Clostridium botulinum. Appl Environ Microbiol 76:4448–4460. https://doi.org/10.1128/AEM.03038-09 PubMed DOI PMC
Flemming HC, Wingender J (2010) The biofilm matrix. Nature Rev Microbiol 8:623 DOI
Freedman JC, Li J, Mi E, McClane BA (2019) Identification of an important orphan histidine kinase for the initiation of sporulation and enterotoxin production by Clostridium perfringens type F strain SM101. mBio 10:e02674–02618. https://doi.org/10.1128/mBio.02674-18
Freedman JC, Shrestha A, McClane BA (2016) Clostridium perfringens enterotoxin: action, genetics, and translational applications. Toxins 8:73. https://doi.org/10.3390/toxins8030073 DOI PMC
García-Heredia A, García S, Merino-Mascorro JA, Feng P, Heredia N (2016) Natural plant products inhibits growth and alters the swarming motility, biofilm formation, and expression of virulence genes in enteroaggregative and enterohemorrhagic Escherichia coli. Food Microbiol 59:124–132. https://doi.org/10.1016/j.fm.2016.06.001 PubMed DOI
García S, Vidal JE, Heredia N, Juneja VK (2019) Clostridium perfringens. In: Doyle MP, Diez-Gonzalez F, Hll C (eds) Food Microbiology: Fundamentalsand Frontiers. 5th edn. ASM Press, Washington, D.C. pp 513-540.
Gordon CP, Williams P, Chan WC (2013) Attenuating Staphylococcus aureus virulence gene regulation: a medicinal chemistry perspective. J Med Chem 56:1389–1404. https://doi.org/10.1021/jm3014635 PubMed DOI PMC
Gray B, Hall P, Gresham H (2013) Targeting Agr- and Agr-Like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. Sensors (basel, Switzerland) 13:5130–5166. https://doi.org/10.3390/s130405130 DOI
Guo S, Liu D, Zhang B, Li Z, Li Y, Ding B, Guo Y (2017) Two Lactobacillus Species inhibit the growth and α-toxin production of Clostridium perfringens and induced proinflammatory factors in chicken intestinal epithelial cells in vitro. Front Microbiol 8:2081. https://doi.org/10.3389/fmicb.2017.02081 PubMed DOI PMC
Heredia NL, Labbé RG (2013) Clostridium perfringens. In: García S, Labbé RG (eds) Guide to foodborne pathogens, Wiley Blackwell, 2nd edn. John Wiley & Sons Ltd, New York, pp 82–90 DOI
Høiby N, Bjarnsholt T, Givskov M, Molin SR, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Ag 35:322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011 DOI
Høiby N, Bjarnsholt T, Moser C, Bassi GL, Coenye T, Donelli G, Hall-Stoodley L, Holá V, Imbert C, Kirketerp-Møller K, Lebeaux D, Oliver A, UllmannAJ, Williams C, ESCMID Study Group for Biofilms and Consulting External Expert Werner Zimmerli (2015) ESCMID guideline for the diagnosis andtreatment of biofilm infections 2014. Clin Microbiol Infect 21: S1-S25. https://doi.org/10.1016/j.cmi.2014.10.02
Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature10.1007/s12223-021-00891-z436:1171-1175. https://doi.org/10.1038/nature03912
Huang IH, Waters M, Grau RR, Sarker MR (2004) Disruption of the gene (spo0A) encoding sporulation transcription factor blocks endospore formation and enterotoxin production in enterotoxigenic Clostridium perfringens type A. FEMS Microbiol Lett 233:233–240. https://doi.org/10.1111/j.1574-6968.2004.tb09487.x PubMed DOI
Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18. https://doi.org/10.1007/s12088-015-0558-0 PubMed DOI
Kretli Winkelströter L, Tulini F, Martinis E (2015) Identification of the bacteriocin produced by cheese isolate Lactobacillus paraplantarum FT259 and its potential influence on Listeria monocytogenes biofilm formation. LWT - Food Sci Technol 64:586–592. https://doi.org/10.1016/j.lwt.2015.06.014 DOI
Lade H, Paul D, Kweon JH (2014) N-Acyl Homoserine lactone-mediated quorum sensing with special reference to use of quorum quenching bacteria in membrane biofouling control. BioMed Res Int 2014:162584. https://doi.org/10.1155/2014/162584 PubMed DOI PMC
LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol R 77:73–111. https://doi.org/10.1128/MMBR.00046-12 DOI
Li J, Chen J, Vidal JE, McClane BA (2011a) The Agr-like quorum-sensing system regulates sporulation and production of enterotoxin and beta2 toxin by Clostridium perfringens type A non-food-borne human gastrointestinal disease strain F5603. Infec Immun 79:2451–2459. https://doi.org/10.1128/IAI.00169-11 DOI
Li J, Paredes-Sabja D, Sarker MR, McClane BA (2016) Clostridium perfringens sporulation and sporulation-associated toxin production. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.TBS-0022-2015
Li J, Wang W, Xu SX, Magarvey NA, McCormick JK (2011b) Lactobacillus reuteri-produced cyclic dipeptides quench Agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. PNAS 108:3360–3365. https://doi.org/10.1073/pnas.1017431108 PubMed DOI PMC
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 DOI
Maldonado-Barragán A, Caballero-Guerrero B, Martín V, Ruiz-Barba JL, Rodríguez JM (2016) Purification and genetic characterization of gassericin E, a novel co-culture inducible bacteriocin from Lactobacillus gasseri EV1461 isolated from the vagina of a healthy woman. BMC Microbiol 16:37–37. https://doi.org/10.1186/s12866-016-0663-1 PubMed DOI PMC
Moormeier DE, Bayles KW (2017) Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 104:365–376. https://doi.org/10.1111/mmi.13634 PubMed DOI PMC
Moormeier DE, Bose JL, Horswill AR, Bayles KW (2014) Temporal and stochastic control of Staphylococcus aureus biofilm development. mBio 5:e01341–01314. https://doi.org/10.1128/mBio.01341-14
Nazzaro F, Fratianni F, Coppola R (2013) Quorum sensing and phytochemicals. International J Mol Sci 14:12607–12619. https://doi.org/10.3390/ijms140612607 DOI
Obana N, Nakamura K, Nomura N (2014) A sporulation factor is involved in the morphological change of Clostridium perfringens biofilms in response to temperature. J Bacteriol 196:1540–1550. https://doi.org/10.1128/JB.01444-13 PubMed DOI PMC
Ohtani K (2016) Gene regulation by the VirS/VirR system in Clostridium perfringens. Anaerobe 41:5–9. https://doi.org/10.1016/j.anaerobe.2016.06.003 PubMed DOI
Ohtani K, Hirakawa H, Paredes-Sabja D, Tashiro K, Kuhara S, Sarker MR, Shimizu T (2013) Unique regulatory mechanism of sporulation and enterotoxin production in Clostridium perfringens. J Bacteriol 195:2931. https://doi.org/10.1128/JB.02152-12 PubMed DOI PMC
Ohtani K, Hirakawa H, Tashiro K, Yoshizawa S, Kuhara S, Shimizu T (2010) Identification of a two-component VirR/VirS regulon in Clostridium perfringens. Anaerobe 16:258–264. https://doi.org/10.1016/j.anaerobe.2009.10.003 PubMed DOI
Ohtani K, Shimizu T (2016) Regulation of toxin production in Clostridium perfringens. Toxins 8:207. https://doi.org/10.3390/toxins8070207 DOI PMC
Özel B, Şimşek Ö, Akçelik M, Saris PEJ (2018) Innovative approaches to nisin production. Appl Microbiol Biotechnol 102:6299–6307. https://doi.org/10.1007/s00253-018-9098-y PubMed DOI
Paharik AE, Horswill AR (2016) The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr 4. https://doi.org/10.1128/microbiolspec.VMBF-0022-2015
Park H, Yeo S, Ji Y, Lee J, Yang J, Park S, Shin H, Holzapfel W (2014) Autoinducer-2 associated inhibition by Lactobacillus sakei NR28 reduces virulence of enterohaemorrhagic Escherichia coli O157:H7. Food Control 45:62–69. https://doi.org/10.1016/j.foodcont.2014.04.024 DOI
Ponnusamy K, Paul D, Kweon JH (2009) Inhibition of quorum sensing mechanism and Aeromonas hydrophila biofilm formation by vanillin. Envirol Eng Sci 26:1359–1363. https://doi.org/10.1089/ees.2008.0415 DOI
Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9:522–554. https://doi.org/10.1080/21505594.2017.1313372 PubMed DOI
Shimamura Y, Hirai C, Sugiyama Y, Shibata M, Ozaki J, Murata M, Ohashi N, Masuda S (2017) Inhibitory effects of food additives derived from polyphenols on staphylococcal enterotoxin A production and biofilm formation by Staphylococcus aureus. Bios Biotechnol Biochem 81:2346–2352. https://doi.org/10.1080/09168451.2017.1395681 DOI
Silva CCG, Silva SPM, Ribeiro SC (2018) Application of bacteriocins and protective cultures in dairy food preservation. Front Microbiol 9:594–594. https://doi.org/10.3389/fmicb.2018.00594 PubMed DOI PMC
Steiner E, Dago AE, Young DI, Heap JT, Minton NP, Hoch JA, Young M (2011) Multiple orphan histidine kinases interact directly with Spo0A to control the initiation of endospore formation in Clostridium acetobutylicum. Mol Microbiol 80:641–654. https://doi.org/10.1111/j.1365-2958.2011.07608.x PubMed DOI PMC
Varga JJ, Therit B, Melville SB (2018) Type IV pili and the ccpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infect Immun 76:4944. https://doi.org/10.1128/IAI.00692-08 DOI
Vasudevan R (2014) Biofilms: microbial cities of scientific significance. J Microbiol Exp 1:84–98. https://doi.org/10.15406/jmen.2014.01.00014
Veening JW, Murray H, Errington JA (2009) Mechanism for cell cycle regulation of sporulation initiation in Bacillus subtilis. Genes Dev. 23:1959-70. https://doi.org/10.1101/gad.528209
Vidal JE, Ma M, Saputo J, Garcia J, Uzal FA, McClane BA (2012) Evidence that the Agr-like quorum sensing system regulates the toxin production, cytotoxicity and pathogenicity of Clostridium perfringens type C isolate CN3685. Mol Microbiol 83:179–194. https://doi.org/10.1111/j.1365-2958.2011.07925.x PubMed DOI
Vidal JE, Shak JR, Canizalez-Roman A (2015) The CpAL quorum sensing system regulates production of hemolysins CPA and PFO to build Clostridium perfringens biofilms. Infect Immun 83:2430. https://doi.org/10.1128/IAI.00240-15 PubMed DOI PMC
Yasugi M, Okuzaki D, Kuwana R, Takamatsu H, Fujita M, Sarker MR, Miyake M (2016) Transcriptional profile during deoxycholate-induced sporulation in a Clostridium perfringens isolate causing foodborne illness. Appl Environ Microbiol 82:2929. https://doi.org/10.1128/AEM.00252-16 PubMed DOI PMC
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: A tool to design target-specific primers for polymerase chainreaction. BMC Bioinformatics 13:134. https://doi.org/10.1186/1471-2105-13-134