Advanced Biofuels Based on Fischer-Tropsch Synthesis for Applications in Diesel Engines
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2018119
Horizon 2020 Framework Programme
PubMed
34199859
PubMed Central
PMC8200061
DOI
10.3390/ma14113077
PII: ma14113077
Knihovny.cz E-zdroje
- Klíčová slova
- Fischer–Tropsch synthesis, alternative fuels, biodiesel, biofuel, standardization, waste materials,
- Publikační typ
- časopisecké články MeSH
This paper focuses on the evaluation of the fuel properties of Fischer-Tropsch diesel blends with conventional diesel. Incorporating this advanced fuel into conventional diesel production will enable the use of waste materials and non-food materials as resources, while contributing to a reduction in dependence on crude oil. To evaluate the suitability of using Fischer-Tropsch diesel, cetane number, cetane index, CFPP, density, flash point, heat of combustion, lubricity, viscosity, distillation curve, and fuel composition ratios using multidimensional GC × GC-TOFMS for different blends were measured. It was found that the fuel properties of the blended fuel are comparable to conventional diesel and even outperform conventional fuel in some parameters. All measurements were performed according to current standards, thus ensuring the repeatability of measurements for other research groups or the private sector.
Zobrazit více v PubMed
Office of Energy Efficiency & Renewable Energy: Biofuel Basics. [(accessed on 15 May 2021)];2021 Available online: https://www.energy.gov/eere/office-energy-efficiency-renewable-energy.
DIRECTIVE (EU) 2018/2001 of the European Parliament and of the COUNCIL of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. [(accessed on 16 May 2021)]; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018L2001.
Jeswani H.K., Chilvers A., Azapagic A. Environmental Sustainability of Biofuels: A Review. Proc. R. Soc. A. 2020;476:20200351. doi: 10.1098/rspa.2020.0351. PubMed DOI PMC
Laverdura U.P., Rossi L., Ferella F., Courson C., Zarli A., Alhajyoussef R., Gallucci K. Selective Catalytic Hydrogenation of Vegetable Oils on Lindlar Catalyst. ACS Omega. 2020;5:22901–22913. doi: 10.1021/acsomega.0c02280. PubMed DOI PMC
Kazimierski P., Hercel P., Januszewicz K., Kardaś D. Pre-Treatment of Furniture Waste for Smokeless Charcoal Production. Materials. 2020;13:3188. doi: 10.3390/ma13143188. PubMed DOI PMC
Okoro O.V., Sun Z., Birch J. Techno-Economic Assessment of a Scaled-Up Meat Waste Biorefinery System: A Simulation Study. Materials. 2019;12:1030. doi: 10.3390/ma12071030. PubMed DOI PMC
Pulka J., Manczarski P., Stępień P., Styczyńska M., Koziel J.A., Białowiec A. Waste-to-Carbon: Is the Torrefied Sewage Sludge with High Ash Content a Better Fuel or Fertilizer? Materials. 2020;13:954. doi: 10.3390/ma13040954. PubMed DOI PMC
Matas Güell B., Sandquist J., Sørum L. Gasification of Biomass to Second Generation Biofuels: A Review. J. Energy Resour. Technol. 2013;135:014001. doi: 10.1115/1.4007660. DOI
Moazeni F., Chen Y.-C., Zhang G. Enzymatic Transesterification for Biodiesel Production from Used Cooking Oil, a Review. J. Clean. Prod. 2019;216:117–128. doi: 10.1016/j.jclepro.2019.01.181. DOI
Avagyan A.B., Singh B. Biodiesel: Feedstocks, Technologies, Economics and Barriers. Springer; Singapore: 2019. Biodiesel from Plant Oil and Waste Cooking Oil; pp. 15–75.
Smoliński A., Karwot J., Bondaruk J., Bąk A. The Bioconversion of Sewage Sludge to Bio-Fuel: The Environmental and Economic Benefits. Materials. 2019;12:2417. doi: 10.3390/ma12152417. PubMed DOI PMC
Dębek C. Modification of Pyrolytic Oil from Waste Tyres as a Promising Method for Light Fuel Production. Materials. 2019;12:880. doi: 10.3390/ma12060880. PubMed DOI PMC
Papari S., Bamdad H., Berruti F. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Materials. 2021;14:2586. doi: 10.3390/ma14102586. PubMed DOI PMC
Świechowski K., Stępień P., Syguła E., Koziel J.A., Białowiec A. Lab-Scale Study of Temperature and Duration Effects on Carbonized Solid Fuels Properties Produced from Municipal Solid Waste Components. Materials. 2021;14:1191. doi: 10.3390/ma14051191. PubMed DOI PMC
Kosakowski W., Bryszewska M.A., Dziugan P. Biochars from Post-Production Biomass and Waste from Wood Management: Analysis of Carbonization Products. Materials. 2020;13:4971. doi: 10.3390/ma13214971. PubMed DOI PMC
Wang T., Liu H., Duan C., Xu R., Zhang Z., She D., Zheng J. The Eco-Friendly Biochar and Valuable Bio-Oil from Caragana Korshinskii: Pyrolysis Preparation, Characterization, and Adsorption Applications. Materials. 2020;13:3391. doi: 10.3390/ma13153391. PubMed DOI PMC
Pleyer O., Vrtiška D., Straka P., Vráblík A., Jenčík J., Šimáček P. Hydrocracking of a Heavy Vacuum Gas Oil with Fischer–Tropsch Wax. Energies. 2020;13:5497. doi: 10.3390/en13205497. DOI
Kröger M., Müller-Langer F. Review on Possible Algal-Biofuel Production Processes. Biofuels. 2012;3:333–349. doi: 10.4155/bfs.12.14. DOI
Urtubia H.O., Betanzo L.B., Vásquez M. Microalgae and Cyanobacteria as Green Molecular Factories: Tools and Perspectives. In: Thajuddin N., Dhanasekaran D., editors. Algae-Organisms for Imminent Biotechnology. IntechOpen Limited; London, UK: 2016.
Carneiro M.L.N.M., Pradelle F., Braga S.L., Gomes M.S.P., Martins A.R.F.A., Turkovics F., Pradelle R.N.C. Potential of Biofuels from Algae: Comparison with Fossil Fuels, Ethanol and Biodiesel in Europe and Brazil through Life Cycle Assessment (LCA) Renew. Sustain. Energy Rev. 2017;73:632–653. doi: 10.1016/j.rser.2017.01.152. DOI
Hsu C.S., Robinson P.R. Springer Handbook of Petroleum Technology. 2nd ed. Springer; New York, NY, USA: 2017.
Choi Y.H., Jang Y.J., Park H., Kim W.Y., Lee Y.H., Choi S.H., Lee J.S. Carbon Dioxide Fischer–Tropsch Synthesis: A New Path to Carbon-Neutral Fuels. Appl. Catal. B Environ. 2017;202:605–610. doi: 10.1016/j.apcatb.2016.09.072. DOI
Mahmoudi H., Mahmoudi M., Doustdar O., Jahangiri H., Tsolakis A., Gu S., LechWyszynski M. A Review of Fischer Tropsch Synthesis Process, Mechanism, Surface Chemistry and Catalyst Formulation. Biofuels Eng. 2017;2:11–31. doi: 10.1515/bfuel-2017-0002. DOI
Albuquerque J.S., Costa F.O., Barbosa B.V.S. Fischer–Tropsch Synthesis: Analysis of Products by Anderson–Schulz–Flory Distribution Using Promoted Cobalt Catalyst. Catal. Lett. 2019;149:831–839. doi: 10.1007/s10562-019-02655-4. DOI
Chen W., Lin T., Dai Y., An Y., Yu F., Zhong L., Li S., Sun Y. Recent Advances in the Investigation of Nanoeffects of Fischer–Tropsch Catalysts. Catal. Today. 2018;311:8–22. doi: 10.1016/j.cattod.2017.09.019. DOI
Shafer W.D., Gnanamani M.K., Graham U.M., Yang J., Masuku C.M., Jacobs G., Davis B.H. Fischer–Tropsch: Product Selectivity–The Fingerprint of Synthetic Fuels. Catalysts. 2019;9:259. doi: 10.3390/catal9030259. DOI
Speight J.G. The Chemistry and Technology of Petroleum. 5th ed. CRC Press; Boca Raton, FL, USA: 2014.
Kaiser M.J., de Klerk A., Gary J.H., Handwerk G.E. Petroleum Refining: Technology, Economics and Markets. CRC Press; Boca Raton, FL, USA: 2019.
Ancheyta Juárez J. Modeling and Simulation of Catalytic Reactors for Petroleum Refining. Wiley; Hoboken, NJ, USA: 2011.
Yang H., Zhang C., Gao P., Wang H., Li X., Zhong L., Wei W., Sun Y. A Review of the Catalytic Hydrogenation of Carbon Dioxide into Value-Added Hydrocarbons. Catal. Sci. Technol. 2017;7:4580–4598. doi: 10.1039/C7CY01403A. DOI
Marion M.-C., Bertoncini F., Hugues F., Forestiere A. DGMK/SCI-Conference, Synthesis Gas Chemistry. In: Ernst S., Erdöl D.W.G.F., Kohle E.U., editors. Comprehensive Characterisation of Products from Cobalt Catalysed FischerTropsch Reaction. DGMK-Tagungsbericht; Dresden, Germany: 2006.
De Klerk A. Fischer–Tropsch Refining. 1st ed. Wiley-VCH; Weinheim, Germany: 2011.
Warheit D.B. Hazard and Risk Assessment Strategies for Nanoparticle Exposures: How Far Have We Come in the Past 10 Years? F1000Research. 2018;7:376. doi: 10.12688/f1000research.12691.1. PubMed DOI PMC
Morgeneyer M., Aguerre-Chariol O., Bressot C. STEM Imaging to Characterize Nanoparticle Emissions and Help to Design Nanosafer Paints. Chem. Eng. Res. Des. 2018;136:663–674. doi: 10.1016/j.cherd.2018.06.013. DOI
Bressot C., Aubry A., Pagnoux C., Aguerre-Chariol O., Morgeneyer M. Assessment of Functional Nanomaterials in Medical Applications: Can Time Mend Public and Occupational Health Risks Related to the Products’ Fate? J. Toxicol. Environ. Health Part A. 2018;81:957–973. doi: 10.1080/15287394.2018.1477271. PubMed DOI
Bressot C., Shandilya N., Jayabalan T., Fayet G., Voetz M., Meunier L., Le Bihan O., Aguerre-Chariol O., Morgeneyer M. Exposure Assessment of Nanomaterials at Production Sites by a Short Time Sampling (STS) Approach Strategy and First Results of Measurement Campaigns. Process Saf. Environ. Prot. 2018;116:324–332. doi: 10.1016/j.psep.2018.02.012. DOI
Morgeneyer M., Shandilya N., Chen Y.M., Le Bihan O. Use of a Modified Taber Abrasion Apparatus for Investigating the Complete Stress State during Abrasion and In-Process Wear Particle Aerosol Generation. Chem. Eng. Res. Des. 2015;93:251. doi: 10.1016/j.cherd.2014.04.029. DOI
Paulick M., Morgeneyer M., Kwade A. A New Method for the Determination of Particle Contact Stiffness. Granul. Matter. 2015;17:83–93. doi: 10.1007/s10035-014-0537-x. DOI
Röck M., Morgeneyer M., Schwedes J., Kadau D., Brendel L., Wolf D.E. Steady State Flow of Cohesive and Non-Cohesive Powders. Granul. Matter. 2008;10:285–293. doi: 10.1007/s10035-008-0088-0. DOI
Saleh K., Jaoude M.-T.M.A., Morgeneyer M., Lefrancois E., Le Bihan O., Bouillard J. Dust generation from powders: A characterization test based on stirred fluidization. Powder Technol. 2014;255:141–148. doi: 10.1016/j.powtec.2013.10.051. DOI
Dancuart L.P., de Haan R., de Klerk A. Studies in Surface Science and Catalysis. Elsevier; Amsterdam, The Netherlands: 2004. Chapter 6-Processing of Primary Fischer–Tropsch Products; pp. 482–532.
Akhmedov V.M., Al-Khowaiter S.H., Akhmedov E., Sadikhov A. Low Temperature Hydrocracking of Hydrocarbons on Ni-Supported Catalysts. Appl. Catal. A Gen. 1999;181:51–61. doi: 10.1016/S0926-860X(98)00410-4. DOI
Mäki-Arvela P., Kaka khel T., Azkaar M., Engblom S., Murzin D. Catalytic Hydroisomerization of Long-Chain Hydrocarbons for the Production of Fuels. Catalysts. 2018;8:534. doi: 10.3390/catal8110534. DOI
Bressanin J.M., Klein B.C., Chagas M.F., Watanabe M.D.B., de Mesquita Sampaio I.L., Bonomi A., de Morais E.R., Cavalett O. Techno-Economic and Environmental Assessment of Biomass Gasification and Fischer–Tropsch Synthesis Integrated to Sugarcane Biorefineries. Energies. 2020;13:4576. doi: 10.3390/en13174576. DOI
Frilund C., Simell P., Kurkela E., Eskelinen P. Experimental Bench-Scale Study of Residual Biomass Syngas Desulfurization Using ZnO-Based Adsorbents. Energy Fuels. 2020;34:3326–3335. doi: 10.1021/acs.energyfuels.9b04277. PubMed DOI PMC
Ra H.W., Mun T.-Y., Hong S.J., Chun D.H., Lee H.T., Yoon S.M., Moon J.H., Park S.J., Lee S.H., Yang J.H., et al. Indirect Coal Liquefaction by Integrated Entrained Flow Gasification and Rectisol/Fischer–Tropsch Processes for Producing Automobile Diesel Substitutes. Energy. 2021;219:119597. doi: 10.1016/j.energy.2020.119597. DOI
Sajjad H., Masjuki H.H., Varman M., Kalam M.A., Arbab M.I., Imtenan S., Ashraful A.M. Influence of Gas-to-Liquid (GTL) Fuel in the Blends of Calophyllum Inophyllum Biodiesel and Diesel: An Analysis of Combustion–Performance–Emission Characteristics. Energy Convers. Manag. 2015;97:42–52. doi: 10.1016/j.enconman.2015.02.037. DOI
Du J., Sun W., Wang X., Li G., Tan M., Fan L. Experimental Study on Combustion and Particle Size Distribution of a Common Rail Diesel Engine Fueled with GTL/Diesel Blends. Appl. Therm. Eng. 2014;70:430–440. doi: 10.1016/j.applthermaleng.2014.05.037. DOI
Parravicini M., Barro C., Boulouchos K. Experimental Characterization of GTL, HVO, and OME Based Alternative Fuels for Diesel Engines. Fuel. 2021;292:120177. doi: 10.1016/j.fuel.2021.120177. DOI
Sadeq A.M., Ahmed S.F., Sleiti A.K. Transient 3D Simulations of Turbulent Premixed Flames of Gas-to-Liquid (GTL) Fuel in a Fan-Stirred Combustion Vessel. Fuel. 2021;291:120184. doi: 10.1016/j.fuel.2021.120184. PubMed DOI PMC
Schaberg P., Botha J., Schnell M., Hermann H.-O., Pelz N., Maly R. Emissions Performance of GTL Diesel Fuel and Blends with Optimized Engine Calibrations. SAE Trans. 2005;114:1074–1087.
Kuszewski H., Jaworski A., Mądziel M. Lubricity of Ethanol–Diesel Fuel Blends—Study with the Four-Ball Machine Method. Materials. 2021;14:2492. doi: 10.3390/ma14102492. PubMed DOI PMC
Gough R.V., Bruno T.J. Composition-Explicit Distillation Curves of Alternative Turbine Fuels. Energy Fuels. 2013;27:294–302. doi: 10.1021/ef3016848. DOI
Lissitsyna K., Huertas S., Quintero L.C., Polo L.M. PIONA Analysis of Kerosene by Comprehensive Two-Dimensional Gas Chromatography Coupled to Time of Flight Mass Spectrometry. Fuel. 2014;116:716–722. doi: 10.1016/j.fuel.2013.07.077. DOI
Van der Westhuizen R., Crous R., de Villiers A., Sandra P. Comprehensive Two-Dimensional Gas Chromatography for the Analysis of Fischer–Tropsch Oil Products. J. Chromatogr. A. 2010;1217:8334–8339. doi: 10.1016/j.chroma.2010.10.099. PubMed DOI