• This record comes from PubMed

A Microsatellite Genotyping-Based Genetic Study of Interspecific Hybridization between the Red and Sika Deer in the Western Czech Republic

. 2021 Jun 07 ; 11 (6) : . [epub] 20210607

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
TA02031259 Technology Agency of the Czech Republic
FEKT-S-20-6205 Brno University of Technology

Although inter-species hybrids between the red and sika deer can be phenotypically determined only exceptionally, there is the eventuality of identification via molecular genetic analysis. We used bi-parentally inherited microsatellite markers and a Bayesian statistical framework to re-examine the proportion of hybrids in the Czech red and sika deer populations. In total, 123 samples were collected, and the nuclear dataset consisted of 2668 allelic values. The number of alleles per locus ranged from 10 (BM1818) to 22 (BM888 and T193), yielding the mean of 16 alleles per locus across the deer. The mean allelic diversity of the red deer markedly exceeded that of the Japanese sika deer. Interspecific hybrids were detected, enabling us to confirm the genetic introgression of the sika deer into the red deer populations and vice versa in western Bohemia. The mean hybrid score equaled 10.6%, with 14.3% of the hybrids being among red deer-like individuals and 6.7% among sika-like ones. At two western Bohemian locations, namely, Doupovské hory and Slavkovský les, the total percentages of hybrid animals equaled 18.8 and 8.9, respectively. No red deer alleles were detected in the sika populations of the subregions of Kladská, Žlutice, and Lány. The NeighborNet network clearly separated the seven red and sika deer sampling populations according to the geography. The knowledge gained from the evaluated data is applicable in hunting management to reduce hybridization with the European deer.

See more in PubMed

Simberloff D. Hybridization between native and introduced wildlife species: Importance for conservation. Wildl. Biol. 1996;2:143–150. doi: 10.2981/wlb.1996.012. DOI

Huxel G.R. Rapid displacement of native species by invasive species: Effects of hybridization. Biol. Cons. 1999;89:143–152. doi: 10.1016/S0006-3207(98)00153-0. DOI

Allendorf F.W., Leary R.F., Spruell P., Wenburg J.K. The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 2001;16:613–622. doi: 10.1016/S0169-5347(01)02290-X. DOI

Harrington R. Hybridization among deer and its implications for conservation. Ir. For. 1973;30:64–78.

Fitzpatrick B.M., Ryan M.E., Johnson J.R., Corush J. Hybridization and the species problem in conservation. Curr. Zool. 2015;61:206–216. doi: 10.1093/czoolo/61.1.206. DOI

Santostasi N.L., Ciucci P., Bearzi G.S., Bonizzoni S., Gimenez O. Assessing the dynamics of hybridization through a matrix modelling approach. Ecol. Modell. 2020;431:1–11. doi: 10.1016/j.ecolmodel.2020.109120. DOI

Keller R.P., Geist J., Jeschke J.M., Kühn I. Invasive species in Europe: Ecology, status, and policy. Environ. Sci. Eur. 2011;23:1–17. doi: 10.1186/2190-4715-23-23. DOI

Goodman S.J., Barton N.H., Swanson G., Abernethy K., Pemberton J.K. Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics. 1999;152:355–371. doi: 10.1093/genetics/152.1.355. PubMed DOI PMC

Abbott R., Albach D., Ansell S., Arntzen J.W., Baird J.E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., et al. Hybridization and speciation. J. Evol. Biol. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI

Zhang L., Hua Y., Wei S. High Genetic Diversity of an Invasive Alien Species: Comparison between Fur-Farmed and Feral American Mink (Neovison vison) in China. Animals. 2021;11:472. doi: 10.3390/ani11020472. PubMed DOI PMC

Wolf R. Husák, Wolf, Lochman. Daněk/Sika/Jelenec. SZN; Praha, Czech Republic: 1986. Jelen sika; pp. 150–227.

Bartoš L. Sika deer in continental Europe. In: McCullough D.R., Takatsuki S., Kaji K., editors. Sika Deer: Biology and Management of Native and Introduced Populations. Springer; Tokyo, Japan: 2009. pp. 573–594. DOI

Herzog S., Harrington R. The role of hybridisaton in the karyotype evolution of deer (Cervidae, Artiodactyla, Mammalia) Theor. Appl. Genet. 1991;82:425–429. doi: 10.1007/BF00588595. PubMed DOI

Bartoš L., Vítek M. Cluster analysis of red and sika deer phenotypes. In: Ohtaishi N., Sheng H.-I., editors. Deer of China: Biology and Management. Elsevier; Amsterdam, The Netherlands: 1993. pp. 15–21.

Senn H.V., Pemberton J.M. Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area. Mol. Ecol. 2009;18:862–876. doi: 10.1111/j.1365-294X.2008.04051.x. PubMed DOI

Smith S.L., Senn H.V., Pérez-Espona S., Wyman M.T., Heap E., Pemberton J.M. Introgression of exotic Cervus (nippon and canadensis) into red deer (Cervus elaphus) populations in Scotland and the English Lake District. Ecol. Evol. 2018;8:2122–2134. doi: 10.1002/ece3.3767. PubMed DOI PMC

McFarlane S.E., Hunter D.C., Senn H.V., Smith S.L., Holland R., Huisman J., Pemberton J.M. Increased genetic marker density reveals high levels of admixture between red deer and introduced Japanese sika in Kintyre, Scotland. Evol. Appl. 2020;13:432–441. doi: 10.1111/eva.12880. PubMed DOI PMC

Bartoš L., Žirovnický J. Hybridization between red and sika deer, II. Phenotype analysis. Zool. Anz. 1981;207:271–287.

Krojerová J., Barančeková M., Koubek P. Jelen sika, jelen evropský nebo kříženec? Svět Mysliv. 2013;1:8–11.

McDevitt A.D., Edwards C.J., O’Toole P., O’Sullivan P., O’Reilly C., Carden R.F. Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mamm. Biol. 2009;74:263–273. doi: 10.1016/j.mambio.2009.03.015. DOI

Biedrzycka A., Solarz W., Okarma H. Hybridization between native and introduced species of deer in Eastern Europe. J. Mammal. 2012;93:1331–1341. doi: 10.1644/11-MAMM-A-022.1. DOI

Krojerová-Prokešová J., Barančeková M., Koubek P. Application of genetic methods for the detection of deer origin and existence of interspecific hybridization; Proceedings of the Jelen Sika—Přehled Celorepublikových Poznatků; Dubina, Czech Republic. 16 May 2014; Praha, Czech Republic: Česká Lesnická Společnost; 2014. pp. 9–14.

Smith S.L., Carden R.F., Coad B., Birkitt T., Pemberton J.M. A survey of the hybridisation status of Cervus deer species on the island of Ireland. Conserv. Genet. 2014;15:823–835. doi: 10.1007/s10592-014-0582-3. DOI

Ražanskė I., Gibiežaitė J.M., Paulauskas A. Genetic Analysis of Red Deer Cervus elaphus and Sika Deer Cervus nippon to Evaluate Possible Hybridisation in Lithuania. Balt. For. 2017;23:683–690.

McFarlane S.E., Pemberton J.M. Detecting the true extent of introgression during anthropogenic hybridization. Trends Ecol. Evol. 2019;34:315–326. doi: 10.1016/j.tree.2018.12.013. PubMed DOI

Browett S.S., O’Meara D.B., McDevitt A.D. Genetic tools in the management of invasive mammals: Recent trends and future perspectives. Mamm. Rev. 2020;50:200–210. doi: 10.1111/mam.12189. DOI

Frank K., Bana N.Á., Bleier N., Sugár L., Nagy J., Wilhelm J., Kálmán Z., Barta E., Orosz L., Horn P., et al. Mining the red deer genome (CerEla1.0) to develop X-and Y-chromosome-linked STR markers. PLoS ONE. 2020;15:e0242506. doi: 10.1371/journal.pone.0242506. PubMed DOI PMC

Herzog S., Gehle T. Hybridization in the Genus Cervus: Evidence for Hybridization between Red and Sika Deer in Germany. Acad. J. Appl. Sci. Res. 2016;1:7–10.

Šustr P., Lamka J., Rąpała R., Zendulková D., Tesa K., Ernst M., Robovský J., Svobodová K., Pohlová L., Široký Z., et al. Jeleni v Krkonoších/Jelenie w Karkonoszach. Správa KRNAP; Vrchlabí, Czech Republic: Dyrekcja KPN; Jelenia Góra, Poland: 2015. 200p

Cervus Elaphus (Red Deer)—Distribution Map|BioLib.cz. [(accessed on 17 March 2021)]; Available online: https://www.biolib.cz/en/taxonmap/id40/

Basic Data on Hunting Grounds, Game Stock and Hunting—From 1 April 2019 to 31 March 2020|CZSO. [(accessed on 17 March 2021)]; Available online: https://www.czso.cz/csu/czso/basic-data-on-hunting-grounds-game-stock-and-hunting-from-1-april-2019-to-31-march-2020.

Kokeš O. Asijští jeleni na území Československa. Ochr. Fauny. 1970;4:158–161.

Vavruněk J., Wolf R. Sborník Vědeckého Lesnického Ústavu VŠZ v Praze. Volume 20 VŠZ; Praha, Czech Republic: 1977. Chov jelení zvěře v Západočeském kraji.

Babička C., Drábek M., Štika J., Ženožička J. Poznatky z chovu jelena siky. Myslivost. 1977;11:270–271.

Křivánek J. Jelen sika japonský—Plíživé nebezpečí genofondu jelena evropského. Myslivost. 2010;8:12–15.

Dvořák J., Čermák P. Jelen sika a škody působené na lesních porostech ve vybraných honitbách Plzeňska. Lesn. Práce. 2008;87:12–14.

Ježek M., Holá M., Kušta T., Hart V., Červený J. Reprodukční Charakteristiky Samic Jelena Siky: Výzkumné Projekty Grantové Služby LČR. Lesy České republiky; Praha, Czech Republic: 2016. p. 43.

Wolf R., Vavruněk J. Sborník Vědeckého Lesnického Ústavu VŠZ v Praze. 18–19. VŠZ; Praha, Czech Republic: 1975. Sika východní—Cervus nippon Temm. v západních Čechách; pp. 185–199.

Červený J., Anděra M. Vývoj populací spárkaté zvěře v ČR (II.)—Jelen lesní a sika. Svět Mysliv. 2012;13:8–11.

Dvořák J., Palyzová L. Analysis of the Development and Spatial Distribution of Sika Deer (Cervus Nippon) Populations on the Territory of the Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2016;64:1507–1515. doi: 10.11118/actaun201664051507. DOI

Ježek M., Kušta T., Trombik J. Soubor Map: Odstřel Jelena Siky (Cervus Nippon) v Letech 2006 a 2016 na Území České Republiky. Czech University of Life Sciences Prague; Prague, Czech Republic: 2017. p. 10.

Barančeková M., Krojerová-Prokešová J., Voloshina I.V., Myslenkov A.I., Kawata Y., Oshida T., Lamka J., Koubek P. The origin and genetic variability of the Czech sika deer population. Ecol. Res. 2012;27:991–1003. doi: 10.1007/s11284-012-0992-y. DOI

Cervus Nippon (Sika Deer)—Distribution Map|BioLib.cz. [(accessed on 17 March 2021)]; Available online: https://www.biolib.cz/en/taxonmap/id41/

Dvořák J., Kamler J. Jelen Sika—Problematika Chovu: Komplexní Řešení Problematiky Chovu Jelena Siky Včetně Škod Působených Touto Zvěří v Plzeňském Regionu a Navazující Části Karlovarského Regionu. Lesy České Republiky; Hradec Králové, Czech Republic: 2009. p. 65.

Cukor J., Vacek Z., Linda R., Vacek S., Marada P., Šimůnek V., Havránek F. Effects of Bark Stripping on Timber Production and Structure of Norway Spruce Forests in Relation to Climatic Factors. Forests. 2019;10:320. doi: 10.3390/f10040320. DOI

Bartoš L., Hyánek J., Žirovnický J. Hybridization between red and sika deer (Cervus nippon) in Czechoslovakia. Folia Zool. Brno. 1981;31:195–208.

Bartoš L., Žirovnický J. Hybridization between red and sika deer, III. Interspecific behaviour. Zool. Anz. 1982;208:30–36.

Powerscourt V. On the acclimatization of the Japanese deer at Powerscourt; Proceedings of the Zoological Society of London; London, UK. 1 March 1884; pp. 207–209. DOI

Bishop M.D., Kappes S.M., Keele J.W., Stone R.T., Sunden S.L., Hawkins G.A., Toldo S.S., Fries R., Grosz M.D., Yoo J., et al. A genetic linkage map for cattle. Genetics. 1994;136:619–639. doi: 10.1093/genetics/136.2.619. PubMed DOI PMC

Barendse W., Armitage S.M., Kossarek L.M., Shalom A., Kirkpatrick B.W., Ryan A.M., Clayton D., Li L., Neibergs H.L., Zhang N., et al. A genetic linkage map of the bovine genome. Nat. Genet. 1994;6:227–235. doi: 10.1038/ng0394-227. PubMed DOI

Steffen P., Eggen A., Dietz A.B., Womack J.E., Stranzinger G., Fies R. Isolation and mapping of polymorphic microsatellites in cattle. Anim. Genet. 1993;24:121–124. doi: 10.1111/j.1365-2052.1993.tb00252.x. PubMed DOI

Buchanan F.C., Galloway S.M., Crawford A.M. Ovine microsatellites at the OarFCB5, OarFCB19, OarFCB20, OarFCB48, OarFCB129 and OarFCB226 loci. Anim. Genet. 1994;25:60. doi: 10.1111/j.1365-2052.1994.tb00461.x. PubMed DOI

Wilson G.A., Strobeck C., Wu L., Coffin J.W. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol. Ecol. 1997;6:697–699. doi: 10.1046/j.1365-294X.1997.00237.x. PubMed DOI

Jones K.C., Levine K.F., Banks J.D. Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis) Mol. Ecol. Resour. 2002;2:425–427. doi: 10.1046/j.1471-8286.2002.00264.x. DOI

Liu K., Muse S.V. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics. 2005;21:2128–2129. doi: 10.1093/bioinformatics/bti282. PubMed DOI

FSTAT. [(accessed on 17 March 2021)]; Available online: http://www2.unil.ch/popgen/softwares/fstat.htm.

Rousset F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 2008;8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x. PubMed DOI

Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 1983;19:153–170. doi: 10.1007/BF02300753. PubMed DOI

Reynolds J., Weir B.S., Cockerham C.C. Estimation of the Coancestry coefficient: Basic for a short-term genetic distance. Genetics. 1983;105:767–779. doi: 10.1093/genetics/105.3.767. PubMed DOI PMC

Huson D.H., Bryant D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI

Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC

Earl D.A., von Holdt B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI

Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI

Jakobsson M., Rosenberg N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–1806. doi: 10.1093/bioinformatics/btm233. PubMed DOI

Rosenberg N.A. Distruct: A program for the graphical display of population structure. Mol. Ecol. Notes. 2004;4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x. DOI

Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC

Slate J., Coltman D.W., Goodman S.J., MacLean I., Pemberton J.M., Williams J.L. Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries) Anim. Genet. 1998;29:307–315. doi: 10.1046/j.1365-2052.1998.00347.x. PubMed DOI

Krojerová-Prokešová J., Barančeková M., Kawata Y., Oshida T., Igota H., Koubek P. Genetic differentiation between introduced Central European sika and source populations in Japan: Effects of isolation and demographic events. Biol. Invasions. 2017;19:2125–2141. doi: 10.1007/s10530-017-1424-2. DOI

Ziegrosser P. Sika—Nepůvodní—Invazivní—Druh. Myslivost. 2017;12:18.

Pipek P. Seek Sika. Invasion of Sika Deer in the Czech Republic and Europe. Živa. 2018;5:280–281.

Beysard M., Heckel G. Structure and dynamics of hybrid zones at different stages of speciation in the common vole (Microtus arvalis) Mol. Ecol. 2014;23:673–687. doi: 10.1111/mec.12613. PubMed DOI

Macháček Z., Dvořák S., Ježek M., Zahradník D. Impact of interspecific relations between native red deer (Cervus elaphus) and introduced sika deer (Cervus nippon) on their rutting season in the Doupovské hory Mts. J. For. Sci. 2014;60:272–280. doi: 10.17221/47/2014-JFS. DOI

Wyman M., Locatelli Y., Charlton B., Reby D. Female Sexual Preferences Toward Conspecific and Hybrid Male Mating Calls in Two Species of Polygynous Deer, Cervus elaphus and C. nippon. Evol. Biol. 2016;43:227–241. doi: 10.1007/s11692-015-9357-0. PubMed DOI PMC

Li Z., Wright A.G., Si H., Wang X., Qian W., Zhang Z., Li G. Changes in the rumen microbiome and metabolites reveal the effect of host genetics on hybrid crosses. Environ. Microbiol. Rep. 2016;8:1016–1023. doi: 10.1111/1758-2229.12482. PubMed DOI

Vähä J.P., Primmer C.R. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 2006;15:63–72. doi: 10.1111/j.1365-294X.2005.02773.x. PubMed DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...