A Microsatellite Genotyping-Based Genetic Study of Interspecific Hybridization between the Red and Sika Deer in the Western Czech Republic
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TA02031259
Technology Agency of the Czech Republic
FEKT-S-20-6205
Brno University of Technology
PubMed
34200330
PubMed Central
PMC8229882
DOI
10.3390/ani11061701
PII: ani11061701
Knihovny.cz E-resources
- Keywords
- genetic structure, hybridization, introgression, microsatellite variability, sika-red deer hybrid,
- Publication type
- Journal Article MeSH
Although inter-species hybrids between the red and sika deer can be phenotypically determined only exceptionally, there is the eventuality of identification via molecular genetic analysis. We used bi-parentally inherited microsatellite markers and a Bayesian statistical framework to re-examine the proportion of hybrids in the Czech red and sika deer populations. In total, 123 samples were collected, and the nuclear dataset consisted of 2668 allelic values. The number of alleles per locus ranged from 10 (BM1818) to 22 (BM888 and T193), yielding the mean of 16 alleles per locus across the deer. The mean allelic diversity of the red deer markedly exceeded that of the Japanese sika deer. Interspecific hybrids were detected, enabling us to confirm the genetic introgression of the sika deer into the red deer populations and vice versa in western Bohemia. The mean hybrid score equaled 10.6%, with 14.3% of the hybrids being among red deer-like individuals and 6.7% among sika-like ones. At two western Bohemian locations, namely, Doupovské hory and Slavkovský les, the total percentages of hybrid animals equaled 18.8 and 8.9, respectively. No red deer alleles were detected in the sika populations of the subregions of Kladská, Žlutice, and Lány. The NeighborNet network clearly separated the seven red and sika deer sampling populations according to the geography. The knowledge gained from the evaluated data is applicable in hunting management to reduce hybridization with the European deer.
See more in PubMed
Simberloff D. Hybridization between native and introduced wildlife species: Importance for conservation. Wildl. Biol. 1996;2:143–150. doi: 10.2981/wlb.1996.012. DOI
Huxel G.R. Rapid displacement of native species by invasive species: Effects of hybridization. Biol. Cons. 1999;89:143–152. doi: 10.1016/S0006-3207(98)00153-0. DOI
Allendorf F.W., Leary R.F., Spruell P., Wenburg J.K. The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 2001;16:613–622. doi: 10.1016/S0169-5347(01)02290-X. DOI
Harrington R. Hybridization among deer and its implications for conservation. Ir. For. 1973;30:64–78.
Fitzpatrick B.M., Ryan M.E., Johnson J.R., Corush J. Hybridization and the species problem in conservation. Curr. Zool. 2015;61:206–216. doi: 10.1093/czoolo/61.1.206. DOI
Santostasi N.L., Ciucci P., Bearzi G.S., Bonizzoni S., Gimenez O. Assessing the dynamics of hybridization through a matrix modelling approach. Ecol. Modell. 2020;431:1–11. doi: 10.1016/j.ecolmodel.2020.109120. DOI
Keller R.P., Geist J., Jeschke J.M., Kühn I. Invasive species in Europe: Ecology, status, and policy. Environ. Sci. Eur. 2011;23:1–17. doi: 10.1186/2190-4715-23-23. DOI
Goodman S.J., Barton N.H., Swanson G., Abernethy K., Pemberton J.K. Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics. 1999;152:355–371. doi: 10.1093/genetics/152.1.355. PubMed DOI PMC
Abbott R., Albach D., Ansell S., Arntzen J.W., Baird J.E., Bierne N., Boughman J., Brelsford A., Buerkle C.A., Buggs R., et al. Hybridization and speciation. J. Evol. Biol. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI
Zhang L., Hua Y., Wei S. High Genetic Diversity of an Invasive Alien Species: Comparison between Fur-Farmed and Feral American Mink (Neovison vison) in China. Animals. 2021;11:472. doi: 10.3390/ani11020472. PubMed DOI PMC
Wolf R. Husák, Wolf, Lochman. Daněk/Sika/Jelenec. SZN; Praha, Czech Republic: 1986. Jelen sika; pp. 150–227.
Bartoš L. Sika deer in continental Europe. In: McCullough D.R., Takatsuki S., Kaji K., editors. Sika Deer: Biology and Management of Native and Introduced Populations. Springer; Tokyo, Japan: 2009. pp. 573–594. DOI
Herzog S., Harrington R. The role of hybridisaton in the karyotype evolution of deer (Cervidae, Artiodactyla, Mammalia) Theor. Appl. Genet. 1991;82:425–429. doi: 10.1007/BF00588595. PubMed DOI
Bartoš L., Vítek M. Cluster analysis of red and sika deer phenotypes. In: Ohtaishi N., Sheng H.-I., editors. Deer of China: Biology and Management. Elsevier; Amsterdam, The Netherlands: 1993. pp. 15–21.
Senn H.V., Pemberton J.M. Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area. Mol. Ecol. 2009;18:862–876. doi: 10.1111/j.1365-294X.2008.04051.x. PubMed DOI
Smith S.L., Senn H.V., Pérez-Espona S., Wyman M.T., Heap E., Pemberton J.M. Introgression of exotic Cervus (nippon and canadensis) into red deer (Cervus elaphus) populations in Scotland and the English Lake District. Ecol. Evol. 2018;8:2122–2134. doi: 10.1002/ece3.3767. PubMed DOI PMC
McFarlane S.E., Hunter D.C., Senn H.V., Smith S.L., Holland R., Huisman J., Pemberton J.M. Increased genetic marker density reveals high levels of admixture between red deer and introduced Japanese sika in Kintyre, Scotland. Evol. Appl. 2020;13:432–441. doi: 10.1111/eva.12880. PubMed DOI PMC
Bartoš L., Žirovnický J. Hybridization between red and sika deer, II. Phenotype analysis. Zool. Anz. 1981;207:271–287.
Krojerová J., Barančeková M., Koubek P. Jelen sika, jelen evropský nebo kříženec? Svět Mysliv. 2013;1:8–11.
McDevitt A.D., Edwards C.J., O’Toole P., O’Sullivan P., O’Reilly C., Carden R.F. Genetic structure of, and hybridisation between, red (Cervus elaphus) and sika (Cervus nippon) deer in Ireland. Mamm. Biol. 2009;74:263–273. doi: 10.1016/j.mambio.2009.03.015. DOI
Biedrzycka A., Solarz W., Okarma H. Hybridization between native and introduced species of deer in Eastern Europe. J. Mammal. 2012;93:1331–1341. doi: 10.1644/11-MAMM-A-022.1. DOI
Krojerová-Prokešová J., Barančeková M., Koubek P. Application of genetic methods for the detection of deer origin and existence of interspecific hybridization; Proceedings of the Jelen Sika—Přehled Celorepublikových Poznatků; Dubina, Czech Republic. 16 May 2014; Praha, Czech Republic: Česká Lesnická Společnost; 2014. pp. 9–14.
Smith S.L., Carden R.F., Coad B., Birkitt T., Pemberton J.M. A survey of the hybridisation status of Cervus deer species on the island of Ireland. Conserv. Genet. 2014;15:823–835. doi: 10.1007/s10592-014-0582-3. DOI
Ražanskė I., Gibiežaitė J.M., Paulauskas A. Genetic Analysis of Red Deer Cervus elaphus and Sika Deer Cervus nippon to Evaluate Possible Hybridisation in Lithuania. Balt. For. 2017;23:683–690.
McFarlane S.E., Pemberton J.M. Detecting the true extent of introgression during anthropogenic hybridization. Trends Ecol. Evol. 2019;34:315–326. doi: 10.1016/j.tree.2018.12.013. PubMed DOI
Browett S.S., O’Meara D.B., McDevitt A.D. Genetic tools in the management of invasive mammals: Recent trends and future perspectives. Mamm. Rev. 2020;50:200–210. doi: 10.1111/mam.12189. DOI
Frank K., Bana N.Á., Bleier N., Sugár L., Nagy J., Wilhelm J., Kálmán Z., Barta E., Orosz L., Horn P., et al. Mining the red deer genome (CerEla1.0) to develop X-and Y-chromosome-linked STR markers. PLoS ONE. 2020;15:e0242506. doi: 10.1371/journal.pone.0242506. PubMed DOI PMC
Herzog S., Gehle T. Hybridization in the Genus Cervus: Evidence for Hybridization between Red and Sika Deer in Germany. Acad. J. Appl. Sci. Res. 2016;1:7–10.
Šustr P., Lamka J., Rąpała R., Zendulková D., Tesa K., Ernst M., Robovský J., Svobodová K., Pohlová L., Široký Z., et al. Jeleni v Krkonoších/Jelenie w Karkonoszach. Správa KRNAP; Vrchlabí, Czech Republic: Dyrekcja KPN; Jelenia Góra, Poland: 2015. 200p
Cervus Elaphus (Red Deer)—Distribution Map|BioLib.cz. [(accessed on 17 March 2021)]; Available online: https://www.biolib.cz/en/taxonmap/id40/
Basic Data on Hunting Grounds, Game Stock and Hunting—From 1 April 2019 to 31 March 2020|CZSO. [(accessed on 17 March 2021)]; Available online: https://www.czso.cz/csu/czso/basic-data-on-hunting-grounds-game-stock-and-hunting-from-1-april-2019-to-31-march-2020.
Kokeš O. Asijští jeleni na území Československa. Ochr. Fauny. 1970;4:158–161.
Vavruněk J., Wolf R. Sborník Vědeckého Lesnického Ústavu VŠZ v Praze. Volume 20 VŠZ; Praha, Czech Republic: 1977. Chov jelení zvěře v Západočeském kraji.
Babička C., Drábek M., Štika J., Ženožička J. Poznatky z chovu jelena siky. Myslivost. 1977;11:270–271.
Křivánek J. Jelen sika japonský—Plíživé nebezpečí genofondu jelena evropského. Myslivost. 2010;8:12–15.
Dvořák J., Čermák P. Jelen sika a škody působené na lesních porostech ve vybraných honitbách Plzeňska. Lesn. Práce. 2008;87:12–14.
Ježek M., Holá M., Kušta T., Hart V., Červený J. Reprodukční Charakteristiky Samic Jelena Siky: Výzkumné Projekty Grantové Služby LČR. Lesy České republiky; Praha, Czech Republic: 2016. p. 43.
Wolf R., Vavruněk J. Sborník Vědeckého Lesnického Ústavu VŠZ v Praze. 18–19. VŠZ; Praha, Czech Republic: 1975. Sika východní—Cervus nippon Temm. v západních Čechách; pp. 185–199.
Červený J., Anděra M. Vývoj populací spárkaté zvěře v ČR (II.)—Jelen lesní a sika. Svět Mysliv. 2012;13:8–11.
Dvořák J., Palyzová L. Analysis of the Development and Spatial Distribution of Sika Deer (Cervus Nippon) Populations on the Territory of the Czech Republic. Acta Univ. Agric. Silvic. Mendel. Brun. 2016;64:1507–1515. doi: 10.11118/actaun201664051507. DOI
Ježek M., Kušta T., Trombik J. Soubor Map: Odstřel Jelena Siky (Cervus Nippon) v Letech 2006 a 2016 na Území České Republiky. Czech University of Life Sciences Prague; Prague, Czech Republic: 2017. p. 10.
Barančeková M., Krojerová-Prokešová J., Voloshina I.V., Myslenkov A.I., Kawata Y., Oshida T., Lamka J., Koubek P. The origin and genetic variability of the Czech sika deer population. Ecol. Res. 2012;27:991–1003. doi: 10.1007/s11284-012-0992-y. DOI
Cervus Nippon (Sika Deer)—Distribution Map|BioLib.cz. [(accessed on 17 March 2021)]; Available online: https://www.biolib.cz/en/taxonmap/id41/
Dvořák J., Kamler J. Jelen Sika—Problematika Chovu: Komplexní Řešení Problematiky Chovu Jelena Siky Včetně Škod Působených Touto Zvěří v Plzeňském Regionu a Navazující Části Karlovarského Regionu. Lesy České Republiky; Hradec Králové, Czech Republic: 2009. p. 65.
Cukor J., Vacek Z., Linda R., Vacek S., Marada P., Šimůnek V., Havránek F. Effects of Bark Stripping on Timber Production and Structure of Norway Spruce Forests in Relation to Climatic Factors. Forests. 2019;10:320. doi: 10.3390/f10040320. DOI
Bartoš L., Hyánek J., Žirovnický J. Hybridization between red and sika deer (Cervus nippon) in Czechoslovakia. Folia Zool. Brno. 1981;31:195–208.
Bartoš L., Žirovnický J. Hybridization between red and sika deer, III. Interspecific behaviour. Zool. Anz. 1982;208:30–36.
Powerscourt V. On the acclimatization of the Japanese deer at Powerscourt; Proceedings of the Zoological Society of London; London, UK. 1 March 1884; pp. 207–209. DOI
Bishop M.D., Kappes S.M., Keele J.W., Stone R.T., Sunden S.L., Hawkins G.A., Toldo S.S., Fries R., Grosz M.D., Yoo J., et al. A genetic linkage map for cattle. Genetics. 1994;136:619–639. doi: 10.1093/genetics/136.2.619. PubMed DOI PMC
Barendse W., Armitage S.M., Kossarek L.M., Shalom A., Kirkpatrick B.W., Ryan A.M., Clayton D., Li L., Neibergs H.L., Zhang N., et al. A genetic linkage map of the bovine genome. Nat. Genet. 1994;6:227–235. doi: 10.1038/ng0394-227. PubMed DOI
Steffen P., Eggen A., Dietz A.B., Womack J.E., Stranzinger G., Fies R. Isolation and mapping of polymorphic microsatellites in cattle. Anim. Genet. 1993;24:121–124. doi: 10.1111/j.1365-2052.1993.tb00252.x. PubMed DOI
Buchanan F.C., Galloway S.M., Crawford A.M. Ovine microsatellites at the OarFCB5, OarFCB19, OarFCB20, OarFCB48, OarFCB129 and OarFCB226 loci. Anim. Genet. 1994;25:60. doi: 10.1111/j.1365-2052.1994.tb00461.x. PubMed DOI
Wilson G.A., Strobeck C., Wu L., Coffin J.W. Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol. Ecol. 1997;6:697–699. doi: 10.1046/j.1365-294X.1997.00237.x. PubMed DOI
Jones K.C., Levine K.F., Banks J.D. Characterization of 11 polymorphic tetranucleotide microsatellites for forensic applications in California elk (Cervus elaphus canadensis) Mol. Ecol. Resour. 2002;2:425–427. doi: 10.1046/j.1471-8286.2002.00264.x. DOI
Liu K., Muse S.V. PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics. 2005;21:2128–2129. doi: 10.1093/bioinformatics/bti282. PubMed DOI
FSTAT. [(accessed on 17 March 2021)]; Available online: http://www2.unil.ch/popgen/softwares/fstat.htm.
Rousset F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 2008;8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x. PubMed DOI
Nei M., Tajima F., Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 1983;19:153–170. doi: 10.1007/BF02300753. PubMed DOI
Reynolds J., Weir B.S., Cockerham C.C. Estimation of the Coancestry coefficient: Basic for a short-term genetic distance. Genetics. 1983;105:767–779. doi: 10.1093/genetics/105.3.767. PubMed DOI PMC
Huson D.H., Bryant D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI
Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC
Earl D.A., von Holdt B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI
Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI
Jakobsson M., Rosenberg N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–1806. doi: 10.1093/bioinformatics/btm233. PubMed DOI
Rosenberg N.A. Distruct: A program for the graphical display of population structure. Mol. Ecol. Notes. 2004;4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x. DOI
Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marra M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Slate J., Coltman D.W., Goodman S.J., MacLean I., Pemberton J.M., Williams J.L. Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries) Anim. Genet. 1998;29:307–315. doi: 10.1046/j.1365-2052.1998.00347.x. PubMed DOI
Krojerová-Prokešová J., Barančeková M., Kawata Y., Oshida T., Igota H., Koubek P. Genetic differentiation between introduced Central European sika and source populations in Japan: Effects of isolation and demographic events. Biol. Invasions. 2017;19:2125–2141. doi: 10.1007/s10530-017-1424-2. DOI
Ziegrosser P. Sika—Nepůvodní—Invazivní—Druh. Myslivost. 2017;12:18.
Pipek P. Seek Sika. Invasion of Sika Deer in the Czech Republic and Europe. Živa. 2018;5:280–281.
Beysard M., Heckel G. Structure and dynamics of hybrid zones at different stages of speciation in the common vole (Microtus arvalis) Mol. Ecol. 2014;23:673–687. doi: 10.1111/mec.12613. PubMed DOI
Macháček Z., Dvořák S., Ježek M., Zahradník D. Impact of interspecific relations between native red deer (Cervus elaphus) and introduced sika deer (Cervus nippon) on their rutting season in the Doupovské hory Mts. J. For. Sci. 2014;60:272–280. doi: 10.17221/47/2014-JFS. DOI
Wyman M., Locatelli Y., Charlton B., Reby D. Female Sexual Preferences Toward Conspecific and Hybrid Male Mating Calls in Two Species of Polygynous Deer, Cervus elaphus and C. nippon. Evol. Biol. 2016;43:227–241. doi: 10.1007/s11692-015-9357-0. PubMed DOI PMC
Li Z., Wright A.G., Si H., Wang X., Qian W., Zhang Z., Li G. Changes in the rumen microbiome and metabolites reveal the effect of host genetics on hybrid crosses. Environ. Microbiol. Rep. 2016;8:1016–1023. doi: 10.1111/1758-2229.12482. PubMed DOI
Vähä J.P., Primmer C.R. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol. 2006;15:63–72. doi: 10.1111/j.1365-294X.2005.02773.x. PubMed DOI