Possible Therapeutic Potential of Disulfiram for Multiple Myeloma

. 2021 Jun 03 ; 28 (3) : 2087-2096. [epub] 20210603

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34205025

Multiple myeloma (MM) is a malignant disease of the plasma cells representing approximately 10% of all hemato-oncological diseases. Detection of the disease is most probable at around 65 years of age, and the average survival of patients is estimated to be 5-10 years, specifically due to frequent relapses and resistance to the therapy used. Thus, the search for new therapeutic approaches is becoming a big challenge. Disulfiram (DSF), a substance primarily known as a medication against alcoholism, has often been mentioned in recent years in relation to cancer treatment for its secondary anti-cancer effects. Recent studies performed on myeloma cell lines confirm high inhibition of the cell growth activity if a complex of disulfiram and copper is used. Its significant potential is now being seen in the cure of haematological malignities.

Zobrazit více v PubMed

Alexander D.D., Mink P.J., Adami H.-O., Cole P., Mandel J.S., Oken M.M., Trichopoulos D. Multiple myeloma: A review of the epidemiologic literature. Int. J. Cancer. 2007;120(Suppl. 12):40–61. doi: 10.1002/ijc.22718. PubMed DOI

Rajkumar S.V. Multiple myeloma: 2018 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2018;93:1091–1110. doi: 10.1002/ajh.25117. PubMed DOI PMC

Bergsagel P.L., Kuehl W.M. Chromosome translocations in multiple myeloma. Oncogene. 2001;20:5611–5622. doi: 10.1038/sj.onc.1204641. PubMed DOI

Novosadová M. Léčba mnohočetného myelomu včera, dnes a zítra—repetitorium pro lékárníky. [(accessed on 30 March 2021)];Prakt. Lékarenství. 2016 12:e25–e37. doi: 10.36290/lek.2016.095. Available online: https://www.praktickelekarenstvi.cz/pdfs/lek/2016/92/05.pdf. DOI

International Myeloma Foundation, © 1990–2020 What Are MGUS, Smoldering Myeloma, and MM? [(accessed on 30 March 2021)]; Available online: https://www.myeloma.org/what-are-mgus-smm-mm.

Rajkumar S.V. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2016;91:719–734. doi: 10.1002/ajh.24402. PubMed DOI PMC

Ho M., Patel A., Hanley C., Murphy A., McSweeney T., Zhang L., McCann A., O’Gorman P., Bianchi G. Exploiting autophagy in multiple myeloma. J. Cancer Metastasis Treat. 2019;2019 doi: 10.20517/2394-4722.2019.25. DOI

International Myeloma Working Group Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: A report of the International Myeloma Working Group. Br. J. Haematol. 2003;121:749–757. doi: 10.1046/j.1365-2141.2003.04355.x. PubMed DOI

Wu H., Huang T., Ye Z., Fu X., Hu K., Yang X. Correlation of MicroRNA 17-92 Cluster Host Gene (MIR17HG) Polymorphisms with Susceptibility and Prognosis for Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019;19:e359–e366. doi: 10.1016/j.clml.2019.03.018. PubMed DOI

Gerecke C., Fuhrmann S., Strifler S., Schmidt-Hieber M., Einsele H., Knop S. The Diagnosis and Treatment of Multiple Myeloma. Dtsch. Aerzteblatt Online. 2016;113:470–476. doi: 10.3238/arztebl.2016.0470. PubMed DOI PMC

Naymagon L., Abdul-Hay M. Novel agents in the treatment of multiple myeloma: A review about the future. J. Hematol. Oncol. 2016;9:1–20. doi: 10.1186/s13045-016-0282-1. PubMed DOI PMC

Shelef M., Calame K. Regulation of plasma-cell development. Nat. Rev. Immunol. 2005;5:230–242. doi: 10.1038/nri1572. PubMed DOI

Busslinger M. Transcriptional Control of Early B Cell Development. Annu. Rev. Immunol. 2004;22:55–79. doi: 10.1146/annurev.immunol.22.012703.104807. PubMed DOI

Pieper K., Grimbacher B., Eibel H. B-cell biology and development. J. Allergy Clin. Immunol. 2013;131:959–971. doi: 10.1016/j.jaci.2013.01.046. PubMed DOI

Mackay I.R., Rose N.R. The Autoimmune Diseases. 5th ed. Elsevier Inc; Amsterdam, The Netherlands: 2013. DOI

Pilzecker B., Jacobs H. Mutating for Good: DNA Damage Responses during Somatic Hypermutation. Front. Immunol. 2019;10:10. doi: 10.3389/fimmu.2019.00438. PubMed DOI PMC

LeBien T.W. B Cell Development. Fetal Neonatal Physiol. 2017:1202–1207. doi: 10.1016/B978-0-323-35214-7.00124-4. DOI

Bird S.A., Boyd K. Multiple myeloma: An overview of management. Palliat. Care Soc. Pract. 2019;13:13. doi: 10.1177/1178224219868235. PubMed DOI PMC

Hideshima T., Bergsagel P.L., Kuehl W.M., Anderson K.C. Advances in biology of multiple myeloma: Clinical applications. Blood. 2004;104:607–618. doi: 10.1182/blood-2004-01-0037. PubMed DOI

Roulland S., Suarez F., Hermine O., Nadel B. Pathophysiological aspects of memory B-cell development. Trends Immunol. 2008;29:25–33. doi: 10.1016/j.it.2007.10.005. PubMed DOI

Rose N.R., Mackay I.R., editors. The Autoimmune Diseases. Elsevier; Amsterdam, The Netherlands: 2006. DOI

Calame K.L., Lin K.-I., Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu. Rev. Immunol. 2003;21:205–230. doi: 10.1146/annurev.immunol.21.120601.141138. PubMed DOI

Shelef M., Lin K.-I., Savitsky D., Liao J., Calame K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J. Exp. Med. 2005;202:1471–1476. doi: 10.1084/jem.20051611. PubMed DOI PMC

Klein B., Tarte K., Jourdan M., Mathouk K., Moreaux J., Jourdan E., Legouffe E., De Vos J., Rossic J.F. Survival and Proliferation Factors of Normal and Malignant Plasma Cells. Int. J. Hematol. 2003;78:106–113. doi: 10.1007/BF02983377. PubMed DOI PMC

Oracki S.A., Walker J.A., Hibbs M.L., Corcoran L.M., Tarlinton D.M. Plasma cell development and survival. Immunol. Rev. 2010;237:140–159. doi: 10.1111/j.1600-065X.2010.00940.x. PubMed DOI

Lightman S.M., Utley A., Lee K.P. Survival of Long-Lived Plasma Cells (LLPC): Piecing Together the Puzzle. Front. Immunol. 2019;10:965. doi: 10.3389/fimmu.2019.00965. PubMed DOI PMC

Brynjolfsson S.F., Berg L.P., Ekerhult T.O., Rimkute I., Wick M.-J., Mårtensson I.-L., Grimsholm O. Long-Lived Plasma Cells in Mice and Men. Front. Immunol. 2018;9:2673. doi: 10.3389/fimmu.2018.02673. PubMed DOI PMC

Davenport E.L., Moore H.E., Dunlop A.S., Sharp S.Y., Workman P., Morgan G.J., Davies F.E. Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood. 2007;110:2641–2649. doi: 10.1182/blood-2006-11-053728. PubMed DOI

Walker B.A., Mavrommatis K., Wardell C.P., Ashby C., Bauer M., Davies F., Rosenthal A., Wang H., Qu P., Hoering A., et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587–597. doi: 10.1182/blood-2018-03-840132. PubMed DOI PMC

Manier S., Huynh D., Shen Y.J., Zhou J., Yusufzai T., Salem K.Z., Ebright R.Y., Shi J., Park J., Glavey S.V., et al. Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma. Sci. Transl. Med. 2017;9:eaal2668. doi: 10.1126/scitranslmed.aal2668. PubMed DOI PMC

Pawlyn C., Morgan G. Evolutionary biology of high-risk multiple myeloma. Nat. Rev. Cancer. 2017;17:543–556. doi: 10.1038/nrc.2017.63. PubMed DOI

Touzeau C., Maciag P., Amiot M., Moreau P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia. 2018;32:1899–1907. doi: 10.1038/s41375-018-0223-9. PubMed DOI

Nikesitch N., Lee J.M., Ling S., Roberts T.L. Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin. Transl. Immunol. 2018;7:e1007. doi: 10.1002/cti2.1007. PubMed DOI PMC

Gabrea A., Bergsagel P., Chesi M., Shou Y., Kuehl W. Insertion of Excised IgH Switch Sequences Causes Overexpression of Cyclin D1 in a Myeloma Tumor Cell. Mol. Cell. 1999;3:119–123. doi: 10.1016/S1097-2765(00)80180-X. PubMed DOI

Burger R., Günther A., Klausz K., Staudinger M., Peipp M., Penas E.M.M., Rose-John S., Wijdenes J., Gramatzki M. Due to interleukin-6 type cytokine redundancy only glycoprotein 130 receptor blockade efficiently inhibits myeloma growth. Haematol. 2016;102:381–390. doi: 10.3324/haematol.2016.145060. PubMed DOI PMC

Harmer D., Falank C., Reagan M.R. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front. Endocrinol. 2019;9:788. doi: 10.3389/fendo.2018.00788. PubMed DOI PMC

Vrábel D., Pour L., Ševčíková S. The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev. 2019;34:56–66. doi: 10.1016/j.blre.2018.11.003. PubMed DOI

Wong A.H.-H., Shin E.M., Tergaonkar V., Chng W.-J. Targeting NF-kB Signaling for Multiple Myeloma. Cancers. 2020;12:2203. doi: 10.3390/cancers12082203. PubMed DOI PMC

Anderson K.C. Progress and Paradigms in Multiple Myeloma. Clin. Cancer Res. 2016;22:5419–5427. doi: 10.1158/1078-0432.CCR-16-0625. PubMed DOI PMC

Borjan B., Kern J., Steiner N., Gunsilius E., Wolf D., Untergasser G. Spliced XBP1 Levels Determine Sensitivity of Multiple Myeloma Cells to Proteasome Inhibitor Bortezomib Independent of the Unfolded Protein Response Mediator GRP78. Front. Oncol. 2020;9:1530. doi: 10.3389/fonc.2019.01530. PubMed DOI PMC

Obeng E.A., Carlson L.M., Gutman D.M., Harrington W.J., Jr., Lee K.P., Boise L.H. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107:4907–4916. doi: 10.1182/blood-2005-08-3531. PubMed DOI PMC

Michallet A.-S., Mondiere P., Taillardet M., Leverrier Y., Genestier L., Defrance T. Compromising the Unfolded Protein Response Induces Autophagy-Mediated Cell Death in Multiple Myeloma Cells. PLoS ONE. 2011;6:e25820. doi: 10.1371/journal.pone.0025820. PubMed DOI PMC

Wang R., Shen J., Yan H., Gao X., Dong T., Wang P., Zhou J. The Evolving Role of Disulfiram in Radiobiology and the Treatment of Breast Cancer. OncoTargets Ther. 2020;13:10441–10446. doi: 10.2147/OTT.S271532. PubMed DOI PMC

Meraz-Torres F., Plöger S., Garbe C., Niessner H., Sinnberg T. Disulfiram as a Therapeutic Agent for Metastatic Malignant Melanoma—Old Myth or New Logos? Cancers. 2020;12:3538. doi: 10.3390/cancers12123538. PubMed DOI PMC

Skrott Z., Mistrik M., Andersen K.K., Friis S., Majera D., Gursky J., Oždian T., Bartkova J., Turi Z., Moudry P., et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nat. Cell Biol. 2017;552:194–199. doi: 10.1038/nature25016. PubMed DOI PMC

Center for Substance Abuse Treatment . Incorporating Alcohol Pharmacotherapies Into Medical Practice. Substance Abuse and Mental Health Services Administration (US); Rockville, MD, USA: 2009. [(accessed on 21 March 2021)]. (Treatment Improvement Protocol (TIP) Series, No. 49). Chapter 3—Disulfiram. Available online: https://www.ncbi.nlm.nih.gov/books/NBK64036/ PubMed

PubChem [Internet] PubChem Compound Summary for CID 3117, Disulfiram. National Library of Medicine (US), National Center for Biotechnology Information; Bethesda, MD, USA: 2004. [(accessed on 21 May 2021)]. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Disulfiram.

Barth K.S., Malcolm R.J. Disulfiram: An Old Therapeutic with New Applications. CNS Neurol. Disord. Drug Targets. 2010;9:5–12. doi: 10.2174/187152710790966678. PubMed DOI

National Center for Biotechnology Information PubChem Compound Summary for CID 3117, Disulfiram. [(accessed on 31 March 2021)];2021 Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Disulfiram.

Skrott Z., Majera D., Gursky J., Buchtova T., Hajduch M., Mistrik M., Bartek J. Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene. 2019;38:6711–6722. doi: 10.1038/s41388-019-0915-2. PubMed DOI

Kranzler H.R., editor. Handbook of Experimental Pharmacology. Springer; Berlin/Heidelberg, Germany: 1995. The Pharmacology of Alcohol Abuse. DOI

Pye V.E., Beuron F., Keetch C.A., McKeown C., Robinson C.V., Meyer H.H., Zhang X., Freemont P.S. Structural insights into the p97-Ufd1-Npl4 complex. Proc. Natl. Acad. Sci. USA. 2007;104:467–472. doi: 10.1073/pnas.0603408104. PubMed DOI PMC

Yoshino H., Yamada Y., Enokida H., Osako Y., Tsuruda M., Kuroshima K., Sakaguchi T., Sugita S., Tatarano S., Nakagawa M. Targeting NPL4 via drug repositioning using disulfiram for the treatment of clear cell renal cell carcinoma. PLoS ONE. 2020;15:e0236119. doi: 10.1371/journal.pone.0236119. PubMed DOI PMC

Masaki R. Mechanism of action of bortezomib in multiple myeloma therapy. [(accessed on 30 March 2021)];Int. J. Myeloma. 2016 6:1–6. Available online: http://www.jsm.gr.jp/files/journalpdf/2016_6_1_ri-final.pdf.

Hideshima T., Richardson P.G., Anderson K.C. Mechanism of Action of Proteasome Inhibitors and Deacetylase Inhibitors and the Biological Basis of Synergy in Multiple Myeloma. Mol. Cancer Ther. 2011;10:2034–2042. doi: 10.1158/1535-7163.MCT-11-0433. PubMed DOI PMC

Conticello C., Martinetti D., Adamo L., Buccheri S., Giuffrida R., Parrinello N.L., Lombardo L., Anastasi G., Amato G., Cavalli M., et al. Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies. Int. J. Cancer. 2012;131:2197–2203. doi: 10.1002/ijc.27482. PubMed DOI

Hassani S., Ghaffari P., Chahardouli B., Alimoghaddam K., Ghavamzadeh A., Alizadeh S., Ghaffari S.H. Disulfiram/copper causes ROS levels alteration, cell cycle inhibition, and apoptosis in acute myeloid leukaemia cell lines with modulation in the expression of related genes. Biomed. Pharmacother. 2018;99:561–569. doi: 10.1016/j.biopha.2018.01.109. PubMed DOI

Liu P., Brown S., Goktug T., Channathodiyil P., Kannappan V., Hugnot J.-P., Guichet P.-O., Bian X., Armesilla A.L., Darling J.L., et al. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Br. J. Cancer. 2012;107:1488–1497. doi: 10.1038/bjc.2012.442. PubMed DOI PMC

Xu Y., Zhou Q., Feng X., Dai Y., Jiang Y., Jiang W., Liu X., Xing X., Wang Y., Ni Y., et al. Disulfiram/copper markedly induced myeloma cell apoptosis through activation of JNK and intrinsic and extrinsic apoptosis pathways. Biomed. Pharmacother. 2020;126:110048. doi: 10.1016/j.biopha.2020.110048. PubMed DOI

Jin N., Zhu X., Cheng F., Zhang L. Disulfiram/copper targets stem cell-like ALDH + population of multiple myeloma by inhibition of ALDH1A1 and Hedgehog pathway. J. Cell. Biochem. 2018;119:6882–6893. doi: 10.1002/jcb.26885. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...