Possible Therapeutic Potential of Disulfiram for Multiple Myeloma
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34205025
PubMed Central
PMC8293232
DOI
10.3390/curroncol28030193
PII: curroncol28030193
Knihovny.cz E-zdroje
- Klíčová slova
- disulfiram, multiple myeloma, pharmacoresistant, relapses, therapy,
- MeSH
- disulfiram * terapeutické užití MeSH
- lidé MeSH
- lokální recidiva nádoru MeSH
- měď MeSH
- mnohočetný myelom * farmakoterapie MeSH
- nádorové buněčné linie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- disulfiram * MeSH
- měď MeSH
Multiple myeloma (MM) is a malignant disease of the plasma cells representing approximately 10% of all hemato-oncological diseases. Detection of the disease is most probable at around 65 years of age, and the average survival of patients is estimated to be 5-10 years, specifically due to frequent relapses and resistance to the therapy used. Thus, the search for new therapeutic approaches is becoming a big challenge. Disulfiram (DSF), a substance primarily known as a medication against alcoholism, has often been mentioned in recent years in relation to cancer treatment for its secondary anti-cancer effects. Recent studies performed on myeloma cell lines confirm high inhibition of the cell growth activity if a complex of disulfiram and copper is used. Its significant potential is now being seen in the cure of haematological malignities.
Zobrazit více v PubMed
Alexander D.D., Mink P.J., Adami H.-O., Cole P., Mandel J.S., Oken M.M., Trichopoulos D. Multiple myeloma: A review of the epidemiologic literature. Int. J. Cancer. 2007;120(Suppl. 12):40–61. doi: 10.1002/ijc.22718. PubMed DOI
Rajkumar S.V. Multiple myeloma: 2018 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2018;93:1091–1110. doi: 10.1002/ajh.25117. PubMed DOI PMC
Bergsagel P.L., Kuehl W.M. Chromosome translocations in multiple myeloma. Oncogene. 2001;20:5611–5622. doi: 10.1038/sj.onc.1204641. PubMed DOI
Novosadová M. Léčba mnohočetného myelomu včera, dnes a zítra—repetitorium pro lékárníky. [(accessed on 30 March 2021)];Prakt. Lékarenství. 2016 12:e25–e37. doi: 10.36290/lek.2016.095. Available online: https://www.praktickelekarenstvi.cz/pdfs/lek/2016/92/05.pdf. DOI
International Myeloma Foundation, © 1990–2020 What Are MGUS, Smoldering Myeloma, and MM? [(accessed on 30 March 2021)]; Available online: https://www.myeloma.org/what-are-mgus-smm-mm.
Rajkumar S.V. Multiple myeloma: 2016 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2016;91:719–734. doi: 10.1002/ajh.24402. PubMed DOI PMC
Ho M., Patel A., Hanley C., Murphy A., McSweeney T., Zhang L., McCann A., O’Gorman P., Bianchi G. Exploiting autophagy in multiple myeloma. J. Cancer Metastasis Treat. 2019;2019 doi: 10.20517/2394-4722.2019.25. DOI
International Myeloma Working Group Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: A report of the International Myeloma Working Group. Br. J. Haematol. 2003;121:749–757. doi: 10.1046/j.1365-2141.2003.04355.x. PubMed DOI
Wu H., Huang T., Ye Z., Fu X., Hu K., Yang X. Correlation of MicroRNA 17-92 Cluster Host Gene (MIR17HG) Polymorphisms with Susceptibility and Prognosis for Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019;19:e359–e366. doi: 10.1016/j.clml.2019.03.018. PubMed DOI
Gerecke C., Fuhrmann S., Strifler S., Schmidt-Hieber M., Einsele H., Knop S. The Diagnosis and Treatment of Multiple Myeloma. Dtsch. Aerzteblatt Online. 2016;113:470–476. doi: 10.3238/arztebl.2016.0470. PubMed DOI PMC
Naymagon L., Abdul-Hay M. Novel agents in the treatment of multiple myeloma: A review about the future. J. Hematol. Oncol. 2016;9:1–20. doi: 10.1186/s13045-016-0282-1. PubMed DOI PMC
Shelef M., Calame K. Regulation of plasma-cell development. Nat. Rev. Immunol. 2005;5:230–242. doi: 10.1038/nri1572. PubMed DOI
Busslinger M. Transcriptional Control of Early B Cell Development. Annu. Rev. Immunol. 2004;22:55–79. doi: 10.1146/annurev.immunol.22.012703.104807. PubMed DOI
Pieper K., Grimbacher B., Eibel H. B-cell biology and development. J. Allergy Clin. Immunol. 2013;131:959–971. doi: 10.1016/j.jaci.2013.01.046. PubMed DOI
Mackay I.R., Rose N.R. The Autoimmune Diseases. 5th ed. Elsevier Inc; Amsterdam, The Netherlands: 2013. DOI
Pilzecker B., Jacobs H. Mutating for Good: DNA Damage Responses during Somatic Hypermutation. Front. Immunol. 2019;10:10. doi: 10.3389/fimmu.2019.00438. PubMed DOI PMC
LeBien T.W. B Cell Development. Fetal Neonatal Physiol. 2017:1202–1207. doi: 10.1016/B978-0-323-35214-7.00124-4. DOI
Bird S.A., Boyd K. Multiple myeloma: An overview of management. Palliat. Care Soc. Pract. 2019;13:13. doi: 10.1177/1178224219868235. PubMed DOI PMC
Hideshima T., Bergsagel P.L., Kuehl W.M., Anderson K.C. Advances in biology of multiple myeloma: Clinical applications. Blood. 2004;104:607–618. doi: 10.1182/blood-2004-01-0037. PubMed DOI
Roulland S., Suarez F., Hermine O., Nadel B. Pathophysiological aspects of memory B-cell development. Trends Immunol. 2008;29:25–33. doi: 10.1016/j.it.2007.10.005. PubMed DOI
Rose N.R., Mackay I.R., editors. The Autoimmune Diseases. Elsevier; Amsterdam, The Netherlands: 2006. DOI
Calame K.L., Lin K.-I., Tunyaplin C. Regulatory mechanisms that determine the development and function of plasma cells. Annu. Rev. Immunol. 2003;21:205–230. doi: 10.1146/annurev.immunol.21.120601.141138. PubMed DOI
Shelef M., Lin K.-I., Savitsky D., Liao J., Calame K. Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J. Exp. Med. 2005;202:1471–1476. doi: 10.1084/jem.20051611. PubMed DOI PMC
Klein B., Tarte K., Jourdan M., Mathouk K., Moreaux J., Jourdan E., Legouffe E., De Vos J., Rossic J.F. Survival and Proliferation Factors of Normal and Malignant Plasma Cells. Int. J. Hematol. 2003;78:106–113. doi: 10.1007/BF02983377. PubMed DOI PMC
Oracki S.A., Walker J.A., Hibbs M.L., Corcoran L.M., Tarlinton D.M. Plasma cell development and survival. Immunol. Rev. 2010;237:140–159. doi: 10.1111/j.1600-065X.2010.00940.x. PubMed DOI
Lightman S.M., Utley A., Lee K.P. Survival of Long-Lived Plasma Cells (LLPC): Piecing Together the Puzzle. Front. Immunol. 2019;10:965. doi: 10.3389/fimmu.2019.00965. PubMed DOI PMC
Brynjolfsson S.F., Berg L.P., Ekerhult T.O., Rimkute I., Wick M.-J., Mårtensson I.-L., Grimsholm O. Long-Lived Plasma Cells in Mice and Men. Front. Immunol. 2018;9:2673. doi: 10.3389/fimmu.2018.02673. PubMed DOI PMC
Davenport E.L., Moore H.E., Dunlop A.S., Sharp S.Y., Workman P., Morgan G.J., Davies F.E. Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood. 2007;110:2641–2649. doi: 10.1182/blood-2006-11-053728. PubMed DOI
Walker B.A., Mavrommatis K., Wardell C.P., Ashby C., Bauer M., Davies F., Rosenthal A., Wang H., Qu P., Hoering A., et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587–597. doi: 10.1182/blood-2018-03-840132. PubMed DOI PMC
Manier S., Huynh D., Shen Y.J., Zhou J., Yusufzai T., Salem K.Z., Ebright R.Y., Shi J., Park J., Glavey S.V., et al. Inhibiting the oncogenic translation program is an effective therapeutic strategy in multiple myeloma. Sci. Transl. Med. 2017;9:eaal2668. doi: 10.1126/scitranslmed.aal2668. PubMed DOI PMC
Pawlyn C., Morgan G. Evolutionary biology of high-risk multiple myeloma. Nat. Rev. Cancer. 2017;17:543–556. doi: 10.1038/nrc.2017.63. PubMed DOI
Touzeau C., Maciag P., Amiot M., Moreau P. Targeting Bcl-2 for the treatment of multiple myeloma. Leukemia. 2018;32:1899–1907. doi: 10.1038/s41375-018-0223-9. PubMed DOI
Nikesitch N., Lee J.M., Ling S., Roberts T.L. Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin. Transl. Immunol. 2018;7:e1007. doi: 10.1002/cti2.1007. PubMed DOI PMC
Gabrea A., Bergsagel P., Chesi M., Shou Y., Kuehl W. Insertion of Excised IgH Switch Sequences Causes Overexpression of Cyclin D1 in a Myeloma Tumor Cell. Mol. Cell. 1999;3:119–123. doi: 10.1016/S1097-2765(00)80180-X. PubMed DOI
Burger R., Günther A., Klausz K., Staudinger M., Peipp M., Penas E.M.M., Rose-John S., Wijdenes J., Gramatzki M. Due to interleukin-6 type cytokine redundancy only glycoprotein 130 receptor blockade efficiently inhibits myeloma growth. Haematol. 2016;102:381–390. doi: 10.3324/haematol.2016.145060. PubMed DOI PMC
Harmer D., Falank C., Reagan M.R. Interleukin-6 Interweaves the Bone Marrow Microenvironment, Bone Loss, and Multiple Myeloma. Front. Endocrinol. 2019;9:788. doi: 10.3389/fendo.2018.00788. PubMed DOI PMC
Vrábel D., Pour L., Ševčíková S. The impact of NF-κB signaling on pathogenesis and current treatment strategies in multiple myeloma. Blood Rev. 2019;34:56–66. doi: 10.1016/j.blre.2018.11.003. PubMed DOI
Wong A.H.-H., Shin E.M., Tergaonkar V., Chng W.-J. Targeting NF-kB Signaling for Multiple Myeloma. Cancers. 2020;12:2203. doi: 10.3390/cancers12082203. PubMed DOI PMC
Anderson K.C. Progress and Paradigms in Multiple Myeloma. Clin. Cancer Res. 2016;22:5419–5427. doi: 10.1158/1078-0432.CCR-16-0625. PubMed DOI PMC
Borjan B., Kern J., Steiner N., Gunsilius E., Wolf D., Untergasser G. Spliced XBP1 Levels Determine Sensitivity of Multiple Myeloma Cells to Proteasome Inhibitor Bortezomib Independent of the Unfolded Protein Response Mediator GRP78. Front. Oncol. 2020;9:1530. doi: 10.3389/fonc.2019.01530. PubMed DOI PMC
Obeng E.A., Carlson L.M., Gutman D.M., Harrington W.J., Jr., Lee K.P., Boise L.H. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107:4907–4916. doi: 10.1182/blood-2005-08-3531. PubMed DOI PMC
Michallet A.-S., Mondiere P., Taillardet M., Leverrier Y., Genestier L., Defrance T. Compromising the Unfolded Protein Response Induces Autophagy-Mediated Cell Death in Multiple Myeloma Cells. PLoS ONE. 2011;6:e25820. doi: 10.1371/journal.pone.0025820. PubMed DOI PMC
Wang R., Shen J., Yan H., Gao X., Dong T., Wang P., Zhou J. The Evolving Role of Disulfiram in Radiobiology and the Treatment of Breast Cancer. OncoTargets Ther. 2020;13:10441–10446. doi: 10.2147/OTT.S271532. PubMed DOI PMC
Meraz-Torres F., Plöger S., Garbe C., Niessner H., Sinnberg T. Disulfiram as a Therapeutic Agent for Metastatic Malignant Melanoma—Old Myth or New Logos? Cancers. 2020;12:3538. doi: 10.3390/cancers12123538. PubMed DOI PMC
Skrott Z., Mistrik M., Andersen K.K., Friis S., Majera D., Gursky J., Oždian T., Bartkova J., Turi Z., Moudry P., et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nat. Cell Biol. 2017;552:194–199. doi: 10.1038/nature25016. PubMed DOI PMC
Center for Substance Abuse Treatment . Incorporating Alcohol Pharmacotherapies Into Medical Practice. Substance Abuse and Mental Health Services Administration (US); Rockville, MD, USA: 2009. [(accessed on 21 March 2021)]. (Treatment Improvement Protocol (TIP) Series, No. 49). Chapter 3—Disulfiram. Available online: https://www.ncbi.nlm.nih.gov/books/NBK64036/ PubMed
PubChem [Internet] PubChem Compound Summary for CID 3117, Disulfiram. National Library of Medicine (US), National Center for Biotechnology Information; Bethesda, MD, USA: 2004. [(accessed on 21 May 2021)]. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Disulfiram.
Barth K.S., Malcolm R.J. Disulfiram: An Old Therapeutic with New Applications. CNS Neurol. Disord. Drug Targets. 2010;9:5–12. doi: 10.2174/187152710790966678. PubMed DOI
National Center for Biotechnology Information PubChem Compound Summary for CID 3117, Disulfiram. [(accessed on 31 March 2021)];2021 Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Disulfiram.
Skrott Z., Majera D., Gursky J., Buchtova T., Hajduch M., Mistrik M., Bartek J. Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene. 2019;38:6711–6722. doi: 10.1038/s41388-019-0915-2. PubMed DOI
Kranzler H.R., editor. Handbook of Experimental Pharmacology. Springer; Berlin/Heidelberg, Germany: 1995. The Pharmacology of Alcohol Abuse. DOI
Pye V.E., Beuron F., Keetch C.A., McKeown C., Robinson C.V., Meyer H.H., Zhang X., Freemont P.S. Structural insights into the p97-Ufd1-Npl4 complex. Proc. Natl. Acad. Sci. USA. 2007;104:467–472. doi: 10.1073/pnas.0603408104. PubMed DOI PMC
Yoshino H., Yamada Y., Enokida H., Osako Y., Tsuruda M., Kuroshima K., Sakaguchi T., Sugita S., Tatarano S., Nakagawa M. Targeting NPL4 via drug repositioning using disulfiram for the treatment of clear cell renal cell carcinoma. PLoS ONE. 2020;15:e0236119. doi: 10.1371/journal.pone.0236119. PubMed DOI PMC
Masaki R. Mechanism of action of bortezomib in multiple myeloma therapy. [(accessed on 30 March 2021)];Int. J. Myeloma. 2016 6:1–6. Available online: http://www.jsm.gr.jp/files/journalpdf/2016_6_1_ri-final.pdf.
Hideshima T., Richardson P.G., Anderson K.C. Mechanism of Action of Proteasome Inhibitors and Deacetylase Inhibitors and the Biological Basis of Synergy in Multiple Myeloma. Mol. Cancer Ther. 2011;10:2034–2042. doi: 10.1158/1535-7163.MCT-11-0433. PubMed DOI PMC
Conticello C., Martinetti D., Adamo L., Buccheri S., Giuffrida R., Parrinello N.L., Lombardo L., Anastasi G., Amato G., Cavalli M., et al. Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies. Int. J. Cancer. 2012;131:2197–2203. doi: 10.1002/ijc.27482. PubMed DOI
Hassani S., Ghaffari P., Chahardouli B., Alimoghaddam K., Ghavamzadeh A., Alizadeh S., Ghaffari S.H. Disulfiram/copper causes ROS levels alteration, cell cycle inhibition, and apoptosis in acute myeloid leukaemia cell lines with modulation in the expression of related genes. Biomed. Pharmacother. 2018;99:561–569. doi: 10.1016/j.biopha.2018.01.109. PubMed DOI
Liu P., Brown S., Goktug T., Channathodiyil P., Kannappan V., Hugnot J.-P., Guichet P.-O., Bian X., Armesilla A.L., Darling J.L., et al. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Br. J. Cancer. 2012;107:1488–1497. doi: 10.1038/bjc.2012.442. PubMed DOI PMC
Xu Y., Zhou Q., Feng X., Dai Y., Jiang Y., Jiang W., Liu X., Xing X., Wang Y., Ni Y., et al. Disulfiram/copper markedly induced myeloma cell apoptosis through activation of JNK and intrinsic and extrinsic apoptosis pathways. Biomed. Pharmacother. 2020;126:110048. doi: 10.1016/j.biopha.2020.110048. PubMed DOI
Jin N., Zhu X., Cheng F., Zhang L. Disulfiram/copper targets stem cell-like ALDH + population of multiple myeloma by inhibition of ALDH1A1 and Hedgehog pathway. J. Cell. Biochem. 2018;119:6882–6893. doi: 10.1002/jcb.26885. PubMed DOI