Experimental and Numerical Study of Combined High and Low Cycle Fatigue Performance of Low Alloy Steel and Engineering Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
51708485
National Natural Science Foundation of China
2017M611925
China Postdoctoral Science Foundation
PubMed
34207465
PubMed Central
PMC8235108
DOI
10.3390/ma14123395
PII: ma14123395
Knihovny.cz E-zdroje
- Klíčová slova
- combined high and low cycle fatigue, high cycle fatigue, low alloy steel, low cycle fatigue, material experiment, structural performance,
- Publikační typ
- časopisecké články MeSH
The fatigue behaviors of metals are different under different in-service environment and loading conditions. This study was devoted to investigating the combined effects of high and low cycle fatigue loads on the performance of the low alloy steel Q345. Three kinds of experiments were carried out, including the pure high cycle fatigue (HCF) tests, the pure low cycle fatigue (LCF) tests, and the combined high and low cycle fatigue (HLCF) tests. The prediction formulae were proposed for the combined high and low cycle fatigue failure. Scanning electron microscopy (SEM) and stereo microscope were used to analyze the microstructure and fracture morphology due to different fatigue loads. Case study on the combined high and low cycle fatigue damage of a steel arch bridge was carried out based on the FE method and the proposed formula. The results show that the LCF life decreases evidently due to the prior HCF damages. The HLCF fracture surface is relatively flat near the crack initiation side, and rugged at the other half part. The fatigue damages at the bridge joints increase significantly with consideration of the pre-fatigue damages caused by traffic load. In the 100th anniversary of service, the fatigue damage index without considering the HCF pre-damage is only about 50% of the coupled damage value.
Zobrazit více v PubMed
Miller D.K. Lessons learned from the Northridge earthquake. Eng. Struct. 1998;20:249–260. doi: 10.1016/S0141-0296(97)00031-X. DOI
Nakashima M., Inoue K., Tada M. Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake. Eng. Struct. 1998;20:271–281. doi: 10.1016/S0141-0296(97)00019-9. DOI
Watanabe E., Sugiura K., Nagata K., Kitane Y. Performances and damages to steel structures during the 1995 Hyogoken-Nanbu earthquake. Eng. Struct. 1998;20:282–290. doi: 10.1016/S0141-0296(97)00029-1. DOI
Xin H.H., Correia J.A.F.O., Veljkovic M. Three-dimensional fatigue crack propagation simulation using extended finite element methods for steel grades S355 and S690 considering mean stress effects. Eng. Struct. 2021;227:111414. doi: 10.1016/j.engstruct.2020.111414. DOI
Xin H.H., Veljkovic M. Fatigue crack initiation prediction using phantom nodes-based extended finite element method for S355 and S690 steel grades. Eng. Fract. Mech. 2019;214:164–176. doi: 10.1016/j.engfracmech.2019.04.026. DOI
Zhao S., Yu D., Hui W. High-cycle fatigue properties of ferritic-pearlitic medium-carbon forging steels with smooth and notched specimens. J. Mater. Eng. Perform. 2021;30:2182–2192. doi: 10.1007/s11665-021-05533-6. DOI
Soyama H., Chighizola C.R., Hill M.R. Effect of compressive residual stress introduced by cavitation peening and shot peening on the improvement of fatigue strength of stainless steel. J. Mater. Process. Technol. 2021;288:116877. doi: 10.1016/j.jmatprotec.2020.116877. DOI
Makino T., Shimokawa Y., Yamamoto M. Fatigue property and design criterion of cast steel for railway bogie frames. Mater. Trans. 2019;60:950–958. doi: 10.2320/matertrans.Z-M2019814. DOI
Hu X.L., Liu Y.J., Khan M.K., Wang Q.Y. High-cycle fatigue properties and damage mechanism of Q345B structural steel. Strength Mater. 2017;49:67–74. doi: 10.1007/s11223-017-9843-y. DOI
Liao X., Wang Y., Feng L., Shi Y.J. Investigation on fatigue crack resistance of Q370qE bridge steel at a low ambient temperature. Constr. Build. Mater. 2020;236:117566. doi: 10.1016/j.conbuildmat.2019.117566. DOI
Adasooriya N.D., Pavlou D., Hemmingsen T. Fatigue strength degradation of corroded structural details: A formula for S-N curve. Fatigue Fract. Eng. Mater. Struct. 2020;43:721–733. doi: 10.1111/ffe.13156. DOI
Guo Z., Ma Y., Wang L., Zhang J., Harik I.E. Corrosion fatigue crack propagation mechanism of high-strength steel bar in various environments. J. Mater. Civ. Eng. 2020;32:04020115. doi: 10.1061/(ASCE)MT.1943-5533.0003165. DOI
Ouyang X.S., Luo X.Y., Wang J. The fatigue properties and damage of the corroded steel bars under the constant-amplitude fatigue load. J. Vibroeng. 2019;21:988–997. doi: 10.21595/jve.2018.20333. DOI
Wang C., Wang Y., Duan L., Wang S., Zhai M. Fatigue performance evaluation and cold reinforcement for old steel bridges. Struct. Eng. Int. 2019;29:1–7. doi: 10.1080/10168664.2019.1593069. DOI
Mohtadi-Bonab M.A., Eskandari M., Ghaednia H., Das S. Effect of microstructural parameters on fatigue crack propagation in an API X65 pipeline steel. J. Mater. Eng. Perform. 2016;25:4933–4940. doi: 10.1007/s11665-016-2335-6. DOI
Chang Y., Sun C., Qiu Y. Effective notch stress method for fatigue assessment of sheet alloy material and bi-material welded joints. Thin-Walled Struct. 2020;151:106745. doi: 10.1016/j.tws.2020.106745. DOI
Park J.Y., Dong J.O., Kim M.H. Comparison of the fatigue performance of ferrite-pearlite and ferrite-bainite dual-phase steels. J. Mar. Sci. Technol. 2020;26:344–356. doi: 10.1007/s00773-020-00739-0. DOI
Hu X.L., Liu Y.J., Huang C.X., Wang Q.Y. Effect of preliminary torsional strain on low-cycle fatigue of Q345B structural steel. Strength Mater. 2019;51:138–144. doi: 10.1007/s11223-019-00059-8. DOI
Fatoba O., Akid R. Uniaxial cyclic elasto-plastic deformation and fatigue failure of API-5L X65 steel under various loading conditions. Theor. Appl. Fract. Mech. 2018;94:147–159. doi: 10.1016/j.tafmec.2018.01.015. DOI
Feng L., Qian X. Low cycle fatigue test and enhanced lifetime estimation of high-strength steel S550 under different strain ratios. Mar. Struct. 2018;61:343–360. doi: 10.1016/j.marstruc.2018.06.011. DOI
Yang L., Gao Y., Shi G., Wang X., Bai Y. Low cycle fatigue property and fracture behavior of low yield point steels. Constr. Build. Mater. 2018;165:688–696. doi: 10.1016/j.conbuildmat.2018.01.075. DOI
Shi G., Gao Y., Wang X., Cui Y. Energy-based low cycle fatigue analysis of low yield point steels. J. Constr. Steel Res. 2018;150:346–353. doi: 10.1016/j.jcsr.2018.08.026. DOI
Milani A.S., Dicleli M. Low-cycle fatigue performance of solid cylindrical steel components subjected to torsion at very large strains. J. Constr. Steel Res. 2017;129:12–27. doi: 10.1016/j.jcsr.2016.10.019. DOI
Sakane M., Itoh T. A synthesis of cracking directions in tension-torsion multiaxial low cycle fatigue at high and room temperatures. Theor. Appl. Fract. Mech. 2018;98:13–22. doi: 10.1016/j.tafmec.2018.09.003. DOI
Tong L., Huang X., Zhou F., Chen Y. Experimental and numerical investigations on extremely-low-cycle fatigue fracture behavior of steel welded joints. J. Constr. Steel Res. 2018;119:98–112. doi: 10.1016/j.jcsr.2015.12.015. DOI
Kanvinde A.M., Deierlein G.G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue. J. Eng. Mech. 2007;133:701–712. doi: 10.1061/(ASCE)0733-9399(2007)133:6(701). DOI
Liao F.F., Wang W., Chen Y.Y. Parameter calibrations and application of micromechanical fracture models of structural steels. Struct. Eng. Mech. 2012;42:153–174. doi: 10.12989/sem.2012.42.2.153. DOI
Liao F.F., Wang M.Q., Tu L.S., Wang J., Lu L. Micromechanical fracture model parameter influencing factor study of structural steels and welding materials. Constr. Build. Mater. 2019;215:898–917. doi: 10.1016/j.conbuildmat.2019.04.155. DOI
Yin Y., Li S., Han Q., Lei P. Calibration and verification of cyclic void growth model for 20Mn5QT cast steel. Eng. Fract. Mech. 2019;206:310–329. doi: 10.1016/j.engfracmech.2018.11.053. DOI
Li S.L., Xie X., Liao Y.H. Improvement of cyclic void growth model for ultra-low cycle fatigue prediction of steel bridge piers. Materials. 2019;12:1615. doi: 10.3390/ma12101615. PubMed DOI PMC
Namjoshi S.A., Mall S. Fretting behavior of Ti-6Al-4V under combined high cycle and low cycle fatigue loading. Int. J. Fatigue. 2001;23:455–461. doi: 10.1016/S0142-1123(01)00143-8. DOI
Hall R.F., Powell B.E. Crack growth in IMI829 at 550 °C under combined high and low cycle fatigue. Mater. High Temp. 2002;19:1–8. doi: 10.1179/mht.2002.19.1.001. DOI
Mall S., Nicholas T., Park T.W. Effect of predamage from low cycle fatigue on high cycle fatigue strength of Ti-6Al-4V. Int. J. Fatigue. 2003;25:1109–1116. doi: 10.1016/S0142-1123(03)00116-6. DOI
Hou N.X., Wen Z.X., Yu Q.M., Yue Z.F. Application of a combined high and low cycle fatigue life model on life prediction of SC blade. Int. J. Fatigue. 2009;31:616–619. doi: 10.1016/j.ijfatigue.2008.03.021. DOI
Zhu S.P., Peng Y., Yu Z.Y., Wang Q. A combined high and low cycle fatigue model for life prediction of turbine blades. Materials. 2017;10:698. doi: 10.3390/ma10070698. PubMed DOI PMC
Structural Steel for Bridge. Standards Press of China; Beijing, China: 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China.
American Society for Testing and Materials (ASTM) E606-92: Standard Practice for Strain-Controlled Fatigue Testing. ASTM International; West Conshohocken, PA, USA: 1998.
The Test Method for Axial Loading Constant-Amplitude Low-Cycle Fatigue of Metallic Materials. Standards Press of China; Beijing, China: 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China.
Ge H.B., Kang L. A damage index-based evaluation method for predicting the ductile crack initiation in steel structures. J. Earthq. Eng. 2012;16:623–643. doi: 10.1080/13632469.2012.676231. DOI
Nonaka T., Ali A. Dynamic response of half-through steel arch bridge using fiber model. J. Bridge Eng. 2001;6:482–488. doi: 10.1061/(ASCE)1084-0702(2001)6:6(482). DOI
Chaboche J.L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity. Int. J. Plast. 1989;5:247–302. doi: 10.1016/0749-6419(89)90015-6. DOI
Dassault Systèmes Simulia Corporation ABAQUS Analysis User’s Manual, Version 6.14. [(accessed on 1 May 2016)];2014 Available online: http://wufengyun.com:888/v6.14/books/usb/default.htm.
American Association of State Highway and Transportation Officials . AASHTO Guide Specifications for LRFD Seismic Bridge Design. 2nd ed. AASHTO; Washington, DC, USA: 2011.