Enhancing the expression of recombinant small laccase in Pichia pastoris by a double promoter system and application in antibiotics degradation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
105889; 112099
National Research Foundation (ZA)
PubMed
34216383
DOI
10.1007/s12223-021-00894-w
PII: 10.1007/s12223-021-00894-w
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- lakasa * genetika metabolismus MeSH
- Pichia * genetika metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- rekombinantní proteiny genetika MeSH
- Saccharomycetales MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- lakasa * MeSH
- rekombinantní proteiny MeSH
Low-expression levels remain a challenge in the quest to use the small laccase (rSLAC) as a viable catalyst. In this study, a recombinant Pichia pastoris strain (rSLAC-GAP-AOX) producing rSLAC under both AOX and GAP promoters (located in two different plasmids) was generated and cultivated in the presence of methanol and mixed feed (methanol:glycerol). Induction with methanol resulted in a maximum laccase activity of 1200 U/L for rSLAC-GAP-AOX which was approximately 2.4-fold higher than rSLAC-AOX and 5.1-fold higher than rSLAC-GAP. The addition of methanol:glycerol in a stoichiometric ratio of 9:1 consistently improved biomass and led to a 1.5-fold increase in rSLAC production as compared to induction with methanol alone. The rSLAC removed 95% of 5 mg/L ciprofloxacin (CIP) and 99% of 100 mg/L tetracycline (TC) in the presence of a mediator. Removal of TC resulted in complete elimination of antibacterial activity while up to 48% reduction in antibacterial activity was observed when CIP was removed. Overall, the present study highlights the effectiveness of a double promoter system in enhancing SLAC production.
Zobrazit více v PubMed
Antošová Z, Sychrová H (2016) Yeast hosts for the production of recombinant laccases: a review. Mol Biotechnol 58:93–116. https://doi.org/10.1007/s12033-015-9910-1 PubMed DOI
Becker D, Varela Della Giustina S, Rodriguez-Mozaz S et al (2016) Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase – degradation of compounds does not always eliminate toxicity. Bioresour Technol 219:500–509. https://doi.org/10.1016/j.biortech.2016.08.004 PubMed DOI
Cámara E, Landes N, Albiol J et al (2017) Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris. Sci Rep 7:1–16. https://doi.org/10.1038/srep44302 DOI
Canales C, Altamirano C, Berrios J (2018) The growth of Pichia pastoris Mut+ on methanol–glycerol mixtures fits to interactive dual-limited kinetics: model development and application to optimised fed-batch operation for heterologous protein production. Bioprocess Biosyst Eng 41:1827–1838. https://doi.org/10.1007/s00449-018-2005-1 PubMed DOI
Cereghino GPL, Cereghino JL, Ilgen C, Cregg JM (2002) Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol 13:329–332. https://doi.org/10.1016/S0958166902003300 PubMed DOI
Chen B, Xu W, Pan X, Lu L (2015) A novel non-blue laccase from Bacillus amyloliquefaciens: Secretory expression and characterization. Int J Biol Macromol 76:39–44. https://doi.org/10.1016/j.ijbiomac.2015.02.019 PubMed DOI
Cruz-Morató C, Ferrando-Climent L, Rodriguez-Mozaz S et al (2013) Degradation of pharmaceuticals in non-sterile urban wastewater by Trametes versicolor in a fluidized bed bioreactor. Water Res 47:5200–5210. https://doi.org/10.1016/j.watres.2013.06.007 PubMed DOI
Cruz-Morató C, Lucas D, Llorca M et al (2014) Hospital wastewater treatment by fungal bioreactor: removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci Total Environ 493:365–376. https://doi.org/10.1016/j.scitotenv.2014.05.117 PubMed DOI
De Bel E, Dewulf J, De Witte B et al (2009) Influence of pH on the sonolysis of ciprofloxacin: Biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere 77:291–295. https://doi.org/10.1016/j.chemosphere.2009.07.033 PubMed DOI
De Cazes M, Belleville MP, Petit E et al (2014) Design and optimization of an enzymatic membrane reactor for tetracycline degradation. Catal Today 236:146–152. https://doi.org/10.1016/j.cattod.2014.02.051 DOI
De Lima Perini J, e Silva B, Tonetti A, Nogueira R (2017) Photo-Fenton degradation of the pharmaceuticals ciprofloxacin and fluoxetine after anaerobic pre-treatment of hospital effluent. Environ Sci Pollut Res 24:6233–6240. https://doi.org/10.1007/s11356-016-7416-4 DOI
Deblonde T, Cossu-leguille C, Hartemann P (2015) Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448. https://doi.org/10.1016/j.ijheh.2011.08.002 DOI
Dubé E, Shareck F, Hurtubise Y et al (2008) Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl Microbiol Biotechnol 79:597–603. https://doi.org/10.1007/s00253-008-1475-5 PubMed DOI
Fan L, Zhao M, Wang Y (2015) Expression of CotA laccase in Pichia pastoris and its electrocatalytic sensing application for hydrogen peroxide. Appl Microbiol Biotechnol 99:9483–9493. https://doi.org/10.1007/s00253-015-6720-0 PubMed DOI
Gidijala L, Uthoff S, Kampen SJ et al (2018) Presence of protein production enhancers results in significantly higher methanol-induced protein production in Pichia pastoris. Microb Cell Fact 17:1–11. https://doi.org/10.1186/s12934-018-0961-4 DOI
Hellwig S, Emde F, Raven NPG et al (2001) Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol Bioeng 74:344–352. https://doi.org/10.1002/bit.1125 PubMed DOI
Holmes WJ, Darby RAJ, Wilks MDB et al (2009) Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass and induction regime. Microb Cell Fact 8:1–14. https://doi.org/10.1186/1475-2859-8-35 DOI
Inan M, Chiruvolu V, Eskridge KM et al (1999) Optimization of temperature-glycerol-pH conditions for a fed-batch fermentation process for recombinant hookworm (Ancylostoma caninum) anticoagulant peptide (AcAP-5) production by Pichia pastoris. Enzyme Microb Technol 24:438–445. https://doi.org/10.1016/S0141-0229(98)00161-6 DOI
Jin X, Yu X, Zhu G et al (2016) Conditions optimizing and application of laccase-mediator system (LMS) for the laccase-catalyzed pesticide degradation. Sci Rep 6:1–7. https://doi.org/10.1038/srep35787 DOI
Karbalaei M, Rezaee SA, Farsiani H (2020) Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol 235:5867–5881. https://doi.org/10.1002/jcp.29583 PubMed DOI
Kazemali MR, Majidzadeh K, Sardari S et al (2016) Enhanced truncated-t-PA (CT-b) expression in high-cell-density fed-batch cultures of Pichia pastoris through optimization of a mixed feeding strategy by response surface methodology. Bioprocess Biosyst Eng 39:565–573. https://doi.org/10.1007/s00449-016-1538-4 PubMed DOI
Krapac IG, Koike S, Meyer MT et al (2005) Long-term monitoring of the occurrence of antibiotic residues and antibiotic resistance in groundwater near swine confinement facilities. Rep CSREES Proj 35(2001):102–10774
Kusari S, Prabhakaran D, Lamshöft M, Spiteller M (2009) In vitro residual anti-bacterial activity of difloxacin, sarafloxacin and their photoproducts after photolysis in water. Environ Pollut 157:2722–2730. https://doi.org/10.1016/j.envpol.2009.04.033 PubMed DOI
Lien L, Hoa N, Chuc N et al (2016) Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use — a one year study from Vietnam. Int J Environ Res Public Health 13:588. https://doi.org/10.3390/ijerph13060588 DOI PMC
Lindsey M, Meyer M, Thurman E (2001) Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal Chem 73:4640–4646 DOI
Liu WC, Inwood S, Gong T et al (2019) Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 39:258–271. https://doi.org/10.1080/07388551.2018.1554620 PubMed DOI
Looser V, Bruhlmann B, Bumbak F et al (2014) Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv 33:1177–1193. https://doi.org/10.1016/j.biotechadv.2015.05.008 DOI
Lu L, Wang TN, Xu TF et al (2013) Cloning and expression of thermo-alkali-stable laccase of Bacillus licheniformis in Pichia pastoris and its characterization. Bioresour Technol 134:81–86. https://doi.org/10.1016/j.biortech.2013.02.015 PubMed DOI
Majumdar S, Lukk T, Solbiati JO et al (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry 53(24):4047–4058 DOI
Marco-Urrea E, Pérez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772. https://doi.org/10.1016/j.chemosphere.2008.10.040 PubMed DOI
McGrew JT, Leiske D, Dell B et al (1997) Expression of trimeric CD40 ligand in Pichia pastoris: use of a rapid method to detect high-level expressing transformants. Gene 187:193–200. https://doi.org/10.1016/S0378-1119(96)00747-0 PubMed DOI
Murugesan K, Chang YY, Kim YM, et al (2010) Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res 44:298-308.
Öztürk S, Ergün BG, Çalık P (2017) Double promoter expression systems for recombinant protein production by industrial microorganisms. Appl Microbiol Biotechnol 101:7459–7475. https://doi.org/10.1007/s00253-017-8487-y PubMed DOI
Pan LJ, Li J, Li CX et al (2018) Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge. J Hazard Mater 343:59–67. https://doi.org/10.1016/j.jhazmat.2017.09.009 PubMed DOI
Panula-Perälä J, Vasala A, Karhunen J et al (2014) Small-scale slow glucose feed cultivation of Pichia pastoris without repression of AOX1 promoter: Towards high throughput cultivations. Bioprocess Biosyst Eng 37:1261–1269. https://doi.org/10.1007/s00449-013-1098-9 PubMed DOI
Parashar D, Satyanarayana T (2016) Enhancing the production of recombinant acidic α-amylase and phytase in Pichia pastoris under dual promoters [constitutive (GAP) and inducible (AOX)] in mixed fed batch high cell density cultivation. Process Biochem 51:1315–1322. https://doi.org/10.1016/j.procbio.2016.07.027 DOI
Paul T, Dodd MC, Strathmann TJ (2010) Photolytic and photocatalytic decomposition of aqueous ciprofloxacin: Transformation products and residual antibacterial activity. Water Res 44:3121–3132. https://doi.org/10.1016/j.watres.2010.03.002 PubMed DOI
Pena A, Paulo M, Silva LJG et al (2010) Tetracycline antibiotics in hospital and municipal wastewaters : a pilot study in Portugal. Anal Bioanal Chem 396:2929–2936. https://doi.org/10.1007/s00216-010-3581-3 PubMed DOI
Soden DM, O’Callaghan J, Dobson ADW (2002) Molecular cloning of a laccase isozyme gene from Pleurotus sajor-caju and expression in the heterologous Pichia pastoris host. Microbiology 148:4003–4014. https://doi.org/10.1099/00221287-148-12-4003 PubMed DOI
Sprenger M, Fukuda K (2016) New mechanisms, new worries. Science 351(80):1263–1264. https://doi.org/10.1126/science.aad9450
Sturini M, Speltini A, Maraschi F et al (2012) Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts. Water Res 46:5575–5582. https://doi.org/10.1016/j.watres.2012.07.043 PubMed DOI
Suda T, Hata T, Kawai S et al (2012) Treatment of tetracycline antibiotics by laccase in the presence of 1-hydroxybenzotriazole. Bioresour Technol 103:498–501. https://doi.org/10.1016/j.biortech.2011.10.041 PubMed DOI
Sun K, Huang Q, Li S (2017) Transformation and toxicity evaluation of tetracycline in humic acid solution by laccase coupled with 1-hydroxybenzotriazole. J Hazard Mater 331:182–188. https://doi.org/10.1016/j.jhazmat.2017.02.058 PubMed DOI
Wang J, Lu L, Feng F (2017) Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris. Electron J Biotechnol 28:7–13. https://doi.org/10.1016/j.ejbt.2017.04.002 DOI
Wang TN, Lu L, Wang JY et al (2015) Enhanced expression of an industry applicable CotA laccase from Bacillus subtilis in Pichia pastoris by non-repressing carbon sources together with pH adjustment: recombinant enzyme characterization and dye decolorization. Process Biochem 50:97–103. https://doi.org/10.1016/j.procbio.2014.10.009 DOI
Wang Y, Wang Z, Xu Q et al (2009) Lowering induction temperature for enhanced production of polygalacturonate lyase in recombinant Pichia pastoris. Process Biochem 44:949–954. https://doi.org/10.1016/j.procbio.2009.04.019 DOI
Woo JH, Liu YY, Stavrou S, Neville DM (2004) Increasing secretion of a bivalent anti-T-cell immunotoxin by Pichia pastoris. Appl Environ Microbiol 70:3370–3376. https://doi.org/10.1128/AEM.70.6.3370-3376.2004 PubMed DOI PMC
Wu JM, Lin JC, Chieng LL et al (2003) Combined use of GAP and AOX1 promoter to enhance the expression of human granulocyte-macrophage colony-stimulating factor in Pichia pastoris. Enzyme Microb Technol 33:453–459. https://doi.org/10.1016/S0141-0229(03)00147-9 DOI
Xia J, Wang Q, Luo Q et al (2019) Secretory expression and optimization of Bacillus pumilus CotA-laccase mutant GWLF in Pichia pastoris and its mechanism on Evans blue degradation. Process Biochem 78:33–41. https://doi.org/10.1016/j.procbio.2018.12.034 DOI
Yadav D, Ranjan B, Mchunu N et al (2018) Secretory expression of recombinant small laccase from Streptomyces coelicolor A3(2) in Pichia pastoris. Int J Biol Macromol 108:642–649. https://doi.org/10.1016/j.ijbiomac.2017.11.169 PubMed DOI
Yadav D, Ranjan B, Mchunu N et al (2021) Enzymatic treatment of phenolic pollutants by a small laccase immobilized on APTES-functionalised magnetic nanoparticles. 3 Biotech 11(6):1–12
Yang J, Lin Y, Yang X et al (2017) Degradation of tetracycline by immobilized laccase and the proposed transformation pathway. J Hazard Mater 322:525–531. https://doi.org/10.1016/j.jhazmat.2016.10.019 PubMed DOI
Yang Z, Zhang Z (2018) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: a review. Biotechnol Adv 36:182–195. https://doi.org/10.1016/j.biotechadv.2017.11.002 PubMed DOI
Yu Y, Liu Z, Chen M et al (2020) Enhancing the expression of recombinant κ-carrageenase in Pichia pastoris using dual promoters, co-expressing chaperones and transcription factors. Biocatal Biotransformation 38:104–113. https://doi.org/10.1080/10242422.2019.1655001 DOI
Zhang W, Hywood Potter KJ, Plantz BA et al (2003) Pichia pastoris fermentation with mixed-feeds of glycerol and methanol: growth kinetics and production improvement. J Ind Microbiol Biotechnol 30:210–215. https://doi.org/10.1007/s10295-003-0035-3 PubMed DOI
Zhang XX, Zhang T (2011) Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across china and other global locations. Environ Sci Technol 45:2598–2604. https://doi.org/10.1021/es103672x PubMed DOI
Zhong Y, Yang L, Guo Y et al (2014) High-temperature cultivation of recombinant Pichia pastoris increases endoplasmic reticulum stress and decreases production of human interleukin-10. Microb Cell Fact 13:1–10. https://doi.org/10.1186/s12934-014-0163-7 DOI