• This record comes from PubMed

Two-Sample Mendelian Randomization Analysis of Associations Between Periodontal Disease and Risk of Cancer

. 2021 Jun ; 5 (3) : . [epub] 20210419

Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
K12 HD092535 NICHD NIH HHS - United States
U01 CA182883 NCI NIH HHS - United States
L30 DE028110 NIDCR NIH HHS - United States
C18281/A29019 Cancer Research UK - United Kingdom
29019 Cancer Research UK - United Kingdom
R01 CA154823 NCI NIH HHS - United States
U01 CA247283 NCI NIH HHS - United States
K23 DE026804 NIDCR NIH HHS - United States
P50 CA062924 NCI NIH HHS - United States

BACKGROUND: Observational studies indicate that periodontal disease may increase the risk of colorectal, lung, and pancreatic cancers. Using a 2-sample Mendelian randomization (MR) analysis, we assessed whether a genetic predisposition index for periodontal disease was associated with colorectal, lung, or pancreatic cancer risks. METHODS: Our primary instrument included single nucleotide polymorphisms with strong genome-wide association study evidence for associations with chronic, aggressive, and/or severe periodontal disease (rs729876, rs1537415, rs2738058, rs12461706, rs16870060, rs2521634, rs3826782, and rs7762544). We used summary-level genetic data for colorectal cancer (n = 58 131 cases; Genetics and Epidemiology of Colorectal Cancer Consortium, Colon Cancer Family Registry, and Colorectal Transdisciplinary Study), lung cancer (n = 18 082 cases; International Lung Cancer Consortium), and pancreatic cancer (n = 9254 cases; Pancreatic Cancer Consortia). Four MR approaches were employed for this analysis: random-effects inverse-variance weighted (primary analyses), Mendelian Randomization-Pleiotropy RESidual Sum and Outlier, simple median, and weighted median. We conducted secondary analyses to determine if associations varied by cancer subtype (colorectal cancer location, lung cancer histology), sex (colorectal and pancreatic cancers), or smoking history (lung and pancreatic cancer). All statistical tests were 2-sided. RESULTS: The genetic predisposition index for chronic or aggressive periodontitis was statistically significantly associated with a 3% increased risk of colorectal cancer (per unit increase in genetic index of periodontal disease; P = .03), 3% increased risk of colon cancer (P = .02), 4% increased risk of proximal colon cancer (P = .01), and 3% increased risk of colorectal cancer among females (P = .04); however, it was not statistically significantly associated with the risk of lung cancer or pancreatic cancer, overall or within most subgroups. CONCLUSIONS: Genetic predisposition to periodontitis may be associated with colorectal cancer risk. Further research should determine whether increased periodontitis prevention and increased cancer surveillance of patients with periodontitis is warranted.

See more in PubMed

Fitzmaurice C, Akinyemiju TF, Lami FHA, et al.; Global Burden of Disease Cancer Collaboration. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. JAMA Oncol. 2018;4(11):1553–1568. doi:10.1001/jamaoncol.2018.2706. PubMed PMC

National Cancer Institute USD of H and HS. SEERExplorer Application. Stage distribution of SEER incidence cases, 2008-2017. https://seer.cancer.gov/explorer/application.html?site=1&data_type=4&graph_type=6&compareBy=sex&chk_sex_1=1&chk_sex_3=3&chk_sex_2=2&race=1&age_range=1&hdn_stage=101&advopt_precision=1&advopt_display=2. Accessed July 30, 2020.

Heikkilä P, But A, Sorsa T, Haukka J.. Periodontitis and cancer mortality: register-based cohort study of 68,273 adults in 10-year follow-up. Int J Cancer. 2018;142(11):2244–2253. PubMed

Arora M, Weuve J, Fall K, Pedersen NL, Mucci LA.. An exploration of shared genetic risk factors between periodontal disease and cancers: a prospective co-twin study. Am J Epidemiol. 2010;171(2):253–259. PubMed PMC

Michaud DS, Liu Y, Meyer M, Giovannucci E, Joshipura K.. Periodontal disease, tooth loss, and cancer risk in male health professionals: a prospective cohort study. Lancet Oncol. 2008;9(6):550–558. PubMed PMC

Michaud DS, Fu Z, Shi J, Chung M.. Periodontal disease, tooth loss, and cancer risk. Epidemiol Rev. 2017;39(1):49–58. PubMed PMC

Zeng X-T, Xia L-Y, Zhang Y-G, Li S, Leng W-D, Kwong JSW.. Periodontal disease and incident lung cancer risk: a meta-analysis of cohort studies. J Periodontol. 2016;87(10):1158–1164. PubMed

Corbella S, Veronesi P, Galimberti V, Weinstein R, Fabbro MD, Francetti L.. Is periodontitis a risk indicator for cancer? A meta-analysis. PLoSOne. 2018;13(4):e0195683. PubMed PMC

Pierce BL, Burgess S.. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178(7):1177–1184. PubMed PMC

Inoue A, Solon G.. Two-sample instrumental variables estimators. Rev Econ Stat. 2010;92(3):557–561.

Davey Smith G, Hemani G.. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–R98. PubMed PMC

Burgess S, Butterworth A, Thompson SG.. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–665. PubMed PMC

Burgess S, Scott RA, Timpson NJ, Davey Smith G, Thompson SG, EPIC- InterAct Consortium. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur J Epidemiol. 2015;30(7):543–552. PubMed PMC

Burgess S, Davies NM, Thompson SG.. Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol. 2016;40(7):597–608. PubMed PMC

Sun Y-Q, Richmond RC, Chen Y, Mai X-M.. Mixed evidence for the relationship between periodontitis and Alzheimer’s disease: a bidirectional Mendelian randomization study. PLoS One. 2020;15(1):e0228206. PubMed PMC

Bae S-C, Lee YH.. Causal association between periodontitis and risk of rheumatoid arthritis and systemic lupus erythematosus: a Mendelian randomization. Z Rheumatol. 2020;79(9):929–936. PubMed

Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, et al.Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur Heart J. 2019;40(42):3459–3470. PubMed PMC

Langdon RJ, Richmond RC, Hemani G, et al.A phenome-wide Mendelian randomization study of pancreatic cancer using summary genetic data. Cancer Epidemiol Biomarkers Prev. 2019;28(12):2070–2078. PubMed

Yuan S, Kar S, Carter P, et al.Is type 2 diabetes causally associated with cancer risk? Evidence from a two-sample Mendelian randomization study. Diabetes. 2020;69(7):1588–1596. PubMed PMC

Zhang X, Theodoratou E, Li X, et al.Physical activity and colorectal cancer risk: a two-sample Mendelian randomisation study. Lancet. 2019;394:S101.

Munz M, Willenborg C, Richter GM, et al.A genome-wide association study identifies nucleotide variants at SIGLEC5 and DEFA1A3 as risk loci for periodontitis. Hum Mol Genet. 2017;26(13):2577–2588. PubMed

Munz M, Richter GM, Loos BG, et al.Meta-analysis of genome-wide association studies of aggressive and chronic periodontitis identifies two novel risk loci. Eur J Hum Genet. 2019;27(1):102–113 PubMed PMC

Schaefer AS, Richter GM, Nothnagel M, et al.A genome-wide association study identifies GLT6D1 as a susceptibility locus for periodontitis. Hum Mol Genet. 2010;19(3):553–562. PubMed

Divaris K, Monda KL, North KE, et al.Exploring the genetic basis of chronic periodontitis: a genome-wide association study. Hum Mol Genet. 2013;22(11):2312–2324. PubMed PMC

Shungin D, Haworth S, Divaris K, et al.Genome-wide analysis of dental caries and periodontitis combining clinical and self-reported data. Nat Commun. 2019;10(1):2773.doi:10.1038/s41467-019-10630-1 PubMed PMC

Offenbacher S, Divaris K, Barros SP, et al.Genome-wide association study of biologically informed periodontal complex traits offers novel insights into the genetic basis of periodontal disease. Hum Mol Genet. 2016;25(10):2113–2129. PubMed PMC

Freitag-Wolf S, Dommisch H, Graetz C, et al.Genome-wide exploration identifies sex-specific genetic effects of alleles upstream NPY to increase the risk of severe periodontitis in men. J Clin Periodontol. 2014;41(12):1115–1121. PubMed

Sanders AE, Sofer T, Wong Q, et al.Chronic periodontitis genome-wide association study in the Hispanic Community Health Study/Study of Latinos. J Dent Res. 2017;96(1):64–72. PubMed PMC

Peters U, Jiao S, Schumacher FR, et al.Identification of genetic susceptibility loci for colorectal tumors in a genome-wide meta-analysis. Gastroenterology. 2013;144(4):799–807.e24. PubMed PMC

Tryka KA, Hao L, Sturcke A, et al.NCBI’s database of genotypes and phenotypes: DbGaP. Nucleic Acids Res. 2014;42(Database issue):D975–D979. PubMed PMC

Huyghe JR, Bien SA, Harrison TA, et al.Discovery of common and rare genetic risk variants for colorectal cancer. Nat Genet. 2019;51(1):76–87. PubMed PMC

International Agency for Research on Cancer W. General Study Description - ILCCO. About ILCCO. https://ilcco.iarc.fr/About/study.php. Accessed August 1, 2020.

McKay JD, Hung RJ, Han Y, et al.; SpiroMeta Consortium. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet. 2017;49(7):1126–1132. PubMed PMC

National Cancer Institute - Epidemiology and Genomics Research Program. PanScan, the Pancreatic Cancer Cohort Consortium, and the Pancreatic Cancer Case-Control Consortium. https://epi.grants.cancer.gov/panscan/. Accessed August 1, 2020.

Duell EJ. PanC4. 2020. https://panc4.org/. Accessed May 6, 2021.

Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, et al.Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet. 2009;41(9):986–990. PubMed PMC

Klein AP, Wolpin BM, Risch HA, et al.Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat Commun. 2018;9(1):556. PubMed PMC

Frazer KA, Ballinger DG, Cox DR, et al.; International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–861. PubMed PMC

International Genome Sample Resource. Data portal. https://www.internationalgenome.org/data/. Accessed August 1, 2020.

Amos CI, Dennis J, Wang Z, et al.The OncoArray Consortium: a network for understanding the genetic architecture of common cancers. Cancer Epidemiol Biomarkers Prev. 2017;26(1):126–135. PubMed PMC

Wolpin BM, Rizzato C, Kraft P, et al.Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet. 2014;46(9):994–1000. PubMed PMC

Durbin RM, Altshuler D, Durbin RM, et al.; 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–1073. PubMed PMC

Marchini J, Howie B, Myers S, McVean G, Donnelly P.. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39(7):906–913. PubMed

Wang Z, Jacobs KB, Yeager M, et al.Improved imputation of common and uncommon single nucleotide polymorphisms (SNPs) with a new reference set. Nat Genet. 2011;44(1):6–7. PubMed PMC

Howie B, Marchini J. IMPUTE2. http://mathgen.stats.ox.ac.uk/impute/impute_v2.html. Accessed December 15, 2020.

Bowden J, Del GMF, Minelli C, Davey SG, Sheehan NA, Thompson JR.. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int J Epidemiol. 2016;45(6):1961–1974. doi:10.1093/ije/dyw220 PubMed PMC

Higgins JPT, Thompson SG, Deeks JJ, Altman DG.. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560. PubMed PMC

Verbanck M, Chen C-Y, Neale B, Do R.. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–698. PubMed PMC

Ahn J, Segers S, Hayes RB.. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis. 2012;33(5):1055–1058. doi:10.1093/carcin/bgs112 PubMed PMC

Hu J-M, Shen C-J, Chou Y-C, et al.Risk of colorectal cancer in patients with periodontal disease severity: a nationwide, population-based cohort study. Int J Colorectal Dis. 2018;33(3):349–352. PubMed

Ren HG, Luu HN, Cai H, et al.Editor’s choice. Oral health and risk of colorectal cancer: results from three cohort studies and a meta-analysis. Annals of Oncology. 2016;27(7):1329–1336. PubMed PMC

Michaud DS, Kelsey KT, Papathanasiou E, Genco CA, Giovannucci E.. Periodontal disease and risk of all cancers among male never smokers: an updated analysis of the Health Professionals Follow-up Study. Ann Oncol. 2016;27(5):941–947. PubMed PMC

Momen-Heravi F, Babic A, Tworoger SS, et al.Periodontal disease, tooth loss and colorectal cancer risk: results from the Nurses’ Health Study. Int J Cancer. 2017;140(3):646–652. PubMed PMC

Mai X, LaMonte MJ, Hovey KM, et al.Periodontal disease severity and cancer risk in postmenopausal women: The Buffalo OsteoPerio Study. Cancer Causes Control. 2016;27(2):217–228. PubMed PMC

Michaud DS, Lu J, Peacock-Villada AY, et al.Periodontal disease assessed using clinical dental measurements and cancer risk in the ARIC study. J Natl Cancer Inst. 2018;110(8):843–854. PubMed PMC

Lauritano D, Sbordone L, Nardone M, Iapichino A, Scapoli L, Carinci F.. Focus on periodontal disease and colorectal carcinoma. ORL. 2017;10(3):229–233. PubMed PMC

Flynn KJ, Baxter NT, Schloss PD.. Metabolic and community synergy of oral bacteria in colorectal cancer. mSphere. 2016;1(3):e00102–16. PubMed PMC

Signat B, Roques C, Poulet P, Duffaut D.. Fusobacterium nucleatum in periodontal health and disease. Curr Issues Mol Biol. 2011;13(2):25–36. PubMed

Castellarin M, Warren RL, Freeman JD, et al.Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306. PubMed PMC

Kostic AD, Gevers D, Pedamallu CS, et al.Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–298. PubMed PMC

Mima K, Cao Y, Chan AT, et al.Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol. 2016;7(11):e200. PubMed PMC

Ito M, Kanno S, Nosho K, et al.Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015;137(6):1258–1268. PubMed

Yu J, Chen Y, Fu X, et al.Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int J Cancer. 2016;139(6):1318–1326. PubMed

Dejea CM, Wick EC, Hechenbleikner EM, et al.Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA. 2014;111(51):18321–18326. doi:10.1073/pnas.1406199111. PubMed PMC

Li F, Lai M.. Colorectal cancer, one entity or three. J Zhejiang Univ Sci B. 2009;10(3):219–229. PubMed PMC

Zhao Z, Feng Q, Yin Z, et al.Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis. Oncotarget. 2017;8(47):83306–83314. doi:10.18632/oncotarget.20667. PubMed PMC

Demb J, Earles A, Martínez ME, et al.Risk factors for colorectal cancer significantly vary by anatomic site. BMJ Open Gastroenterol. 2019;6(1):e000313. PubMed PMC

Loree JM, Pereira AAL, Lam M, et al.Classifying colorectal cancer by tumor location rather than sidedness highlights a continuum in mutation profiles and consensus molecular subtypes. Clin Cancer Res. 2018;24(5):1062–1072. PubMed PMC

Wang J, Yang X, Zou X, Zhang Y, Wang J, Wang Y.. Relationship between periodontal disease and lung cancer: a systematic review and meta-analysis. J Periodontal Res. 2020;55(5):581–593. PubMed

Maisonneuve P, Amar S, Lowenfels AB.. Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis. Ann Oncol. 2017;28(5):985–995. PubMed

Yan X, Yang M, Liu J, et al.Discovery and validation of potential bacterial biomarkers for lung cancer. Am J Cancer Res. 2015;5(10):3111–3122. PubMed PMC

Soory M. Oxidative stress induced mechanisms in the progression of periodontal diseases and cancer: a common approach to redox homeostasis? Cancers (Basel). 2010;2(2):670–692. PubMed PMC

Zhang Y, Yan W, Collins MA, et al.Interleukin-6 is required for pancreatic cancer progression by promoting MAPK signaling activation and oxidative stress resistance. Cancer Res. 2013;73(20):6359–6374. PubMed PMC

Michaud DS. Role of bacterial infections in pancreatic cancer. Carcinogenesis. 2013;34(10):2193–2197. PubMed PMC

Bowden J, Davey Smith G, Haycock PC, Burgess S.. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–314. PubMed PMC

Hartwig FP, Davies NM, Smith GD.. Bias in Mendelian randomization due to assortative mating. Genet Epidemiol. 2018;42(7):608–620. PubMed PMC

Sebro R, Peloso GM, Dupuis J, Risch NJ.. Structured mating: patterns and implications. PLoS Genet. 2017;13(4):e1006655. PubMed PMC

von Hinke S, Davey Smith G, Lawlor DA, Propper C, Windmeijer F.. Genetic markers as instrumental variables. J Health Econ. 2016;45:131–148. PubMed PMC

Burgess S, Labrecque JA.. Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates. Eur J Epidemiol. 2018;33(10):947–952. PubMed PMC

Teumer A, Holtfreter B, Völker U, et al.Genome-wide association study of chronic periodontitis in a general German population. J Clin Periodontol. 2013;40(11):977–985. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...