The Anti-Proliferative Activity of Coordination Compound-Based ZnO Nanoparticles as a Promising Agent Against Triple Negative Breast Cancer Cells
Language English Country New Zealand Media electronic-ecollection
Document type Journal Article
PubMed
34234435
PubMed Central
PMC8257049
DOI
10.2147/ijn.s304902
PII: 304902
Knihovny.cz E-resources
- Keywords
- carboxylate, hexamethylenetetramine, nanoparticles, redox homeostasis imbalance, triple negative breast cancer, zinc oxide coordination compounds,
- MeSH
- Apoptosis drug effects MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Nanoparticles chemistry MeSH
- Zinc Oxide chemistry pharmacology MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents chemistry pharmacology MeSH
- Triple Negative Breast Neoplasms pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Zinc Oxide MeSH
- Antineoplastic Agents MeSH
PURPOSE: The present study deals with the in vitro evaluation of the potential use of coordination compound-based zinc oxide (ZnO) nanoparticles (NPs) for the treatment of triple negative breast cancer cells (TNBrCa). As BrCa is one of the most prevalent cancer types and TNBrCa treatment is difficult due to poor prognosis and a high metastasis rate, finding a more reliable treatment option should be of the utmost interest. METHODS: Prepared by reacting zinc carboxylates (formate, acetate, propionate, butyrate, isobutyrate, valerate) and hexamethylenetetramine, 4 distinct coordination compounds were further subjected to two modes of conversion into ZnO NPs - ultrasonication with oleic acid or heating of pure precursors in an air atmosphere. After detailed characterization, the resulting ZnO NPs were subjected to in vitro testing of cytotoxicity toward TNBrCa and normal breast epithelial cells. Further, their biocompatibility was evaluated. RESULTS: The resulting ZnO NPs provide distinct morphological features, size, biocompatibility, and selective cytotoxicity toward TNBrCa cells. They internalize into two types of TNBrCa cells and imbalance their redox homeostasis, influencing their metabolism, morphology, and ultimately leading to their death via apoptosis or necrosis. CONCLUSION: The crucial properties of ZnO NPs seem to be their morphology, size, and zinc content. The ZnO NPs with the most preferential values of all three properties show great promise for a future potential use in the therapy of TNBrCa.
Central European Institute of Technology Brno University of Technology Brno Czechia
Central European Institute of Technology Mendel University in Brno Brno Czechia
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czechia
Department of Inorganic Chemistry Faculty of Science Palacky University Olomouc Czechia
Institute of General and Ecological Chemistry Lodz University of Technology Lodz Poland
See more in PubMed
Jain V, Kumar H, Anod HV, et al. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release. 2020;326:628–647. doi:10.1016/j.jconrel.2020.07.003 PubMed DOI
Greish K, Mathur A, Al Zahrani R, et al. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J Control Release. 2018;291:184–195. doi:10.1016/j.jconrel.2018.10.030 PubMed DOI
Saraiva DP, Cabral MG, Jacinto A, Braga S. How many diseases is triple negative breast cancer: the protagonism of the immune microenvironment. ESMO Open. 2017;2(4):11. doi:10.1136/esmoopen-2017-000208 PubMed DOI PMC
Sinha R, Kim GJ, Nie SM, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909–1917. doi:10.1158/1535-7163.MCT-06-0141 PubMed DOI
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–284. doi:10.1016/S0168-3659(99)00248-5 PubMed DOI
Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjugate Chem. 2016;27(10):2225–2238. doi:10.1021/acs.bioconjchem.6b00437 PubMed DOI PMC
Fang KJ, Wang LF, Huang HY, Dong SW, Guo YL. Therapeutic efficacy and cardioprotection of nucleolin-targeted doxorubicin-loaded ultrasound nanobubbles in treating triple-negative breast cancer. Nanotechnology. 2021;32(24):13. doi:10.1088/1361-6528/abed03 PubMed DOI
Grewal IK, Singh S, Arora S, Sharma N. Polymeric nanoparticles for breast cancer therapy: a comprehensive review. Biointerface Res Appl Chem. 2021;11(4):11151–11171.
Mohamed H, Asker M, Kotb N, Abdelwahab H. Preparation and characterization of folate decorated 5-fluro uracil loaded albumin nanoparticles and in vitro evaluation of its cytotoxic effect. Biointerface Res Appl Chem. 2021;11(3):10412–10428.
Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano Micro Letters. 2015;7(3):219–242. doi:10.1007/s40820-015-0040-x PubMed DOI PMC
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–71. doi:10.1116/1.2815690 PubMed DOI
Mir AH, Qamar A, Qadir I, Naqvi AH, Begum R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci Rep. 2020;10(1):14. doi:10.1038/s41598-020-58526-1 PubMed DOI PMC
Akhtar MJ, Ahamed M, Kumar S, Khan MAM, Ahmad J, Alrokayan SA. Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int J Nanomed. 2012;7:845–857. PubMed PMC
Deng YX, Zhang HJ. The synergistic effect and mechanism of doxorubicin-ZnO nanocomplexes as a multimodal agent integrating diverse anticancer therapeutics. Int J Nanomed. 2013;8:1835–1841. PubMed PMC
Kollur SP, Prasad SK, Pradeep S, et al. Luteolin-fabricated ZnO nanostructures showed PLK-1 mediated anti-breast cancer activity. Biomolecules. 2021;11(3):21. doi:10.3390/biom11030385 PubMed DOI PMC
Shamasi Z, Es-haghi A, Yazdi MET, Amiri MS, Homayouni-Tabrizi M. Role of Rubia tinctorum in the synthesis of zinc oxide nanoparticles and apoptosis induction in breast cancer cell line. Nanomed J. 2021;8(1):65–72.
D’Souza JN, Prabhu A, Nagaraja GK, Navada KM, Kouser S, Manasa DJ. Unravelling the human triple negative breast cancer suppressive activity of biocompatible zinc oxide nanostructures influenced by Vateria indica (L.) fruit phytochemicals. Mater Sci Eng C Mater Biol Appl. 2021;122:17. doi:10.1016/j.msec.2021.111887 PubMed DOI
Pouresmaeil V, Haghighi S, Raeisalsadati AS, Neamati A, Homayouni-Tabrizi M. The anti-breast cancer effects of green-synthesized zinc oxide nanoparticles using carob extracts. Anti Cancer Agents Med Chem. 2021;21(3):316–326. doi:10.2174/1871520620666200721132522 PubMed DOI
Cho WS, Duffin R, Howie SEM, et al. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol. 2011;8:16. doi:10.1186/1743-8977-8-27 PubMed DOI PMC
Cho WS, Duffin R, Thielbeer F, et al. Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. Toxicol Sci. 2012;126(2):469–477. doi:10.1093/toxsci/kfs006 PubMed DOI
Li CH, Shen CC, Cheng YW, et al. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology. 2012;6(7):746–756. doi:10.3109/17435390.2011.620717 PubMed DOI
Wang B, Feng WY, Wang M, et al. Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res. 2008;10(2):263–276. doi:10.1007/s11051-007-9245-3 DOI
Swiatkowski M, Kruszynski R. Structurally diverse coordination compounds of zinc as effective precursors of zinc oxide nanoparticles with various morphologies. Appl Organomet Chem. 2019;33(4):e4812. doi:10.1002/aoc.4812 DOI
Welcher FJ. The Analytical Uses of Ethylenediamine Tetraacetic Acid. Van Nostrand; 1965.
Sheldrick GM. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A. 2015;71:3–8. doi:10.1107/S2053273314026370 PubMed DOI PMC
Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem. 2015;71:3–8. doi:10.1107/S2053229614024218 PubMed DOI PMC
Sheldrick GM. A short history of SHELX. Acta Crystallogr Sect A. 2008;64:112–122. doi:10.1107/S0108767307043930 PubMed DOI
Wilson AJ, Geist V. International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables. 3rd ed. Dordrecht, Netherlands: Kluwer Academic Publishers; 2004.
International Center of Diffraction Data. Powder diffraction file. 2003.
Tesarova B, Dostalova S, Smidova V, et al. Surface-PASylation of ferritin to form stealth nanovehicles enhances in vivo therapeutic performance of encapsulated ellipticine. Appl Mater Today. 2020;18:11.
Tesarova B, Charousova M, Dostalova S, et al. Folic acid-mediated re-shuttling of ferritin receptor specificity towards a selective delivery of highly cytotoxic nickel(II) coordination compounds. Int J Biol Macromol. 2019;126:1099–1111. doi:10.1016/j.ijbiomac.2018.12.128 PubMed DOI
Michalkova H, Skubalova Z, Sopha H, et al. Complex cytotoxicity mechanism of bundles formed from self-organised 1-D anodic TiO2 nanotubes layers. J Hazard Mater. 2020;388:12. doi:10.1016/j.jhazmat.2020.122054 PubMed DOI
Clemons TD, Bradshaw M, Toshniwal P, et al. Coherency image analysis to quantify collagen architecture: implications in scar assessment. RSC Adv. 2018;8(18):9661–9669. doi:10.1039/C7RA12693J PubMed DOI PMC
Blair J, Howie RA, Wardell JL. Structure of monoclinic zinc N-butanoate. Acta Crystallogr Sect C Cryst Struct Commun. 1993;49:219–221. doi:10.1107/S0108270192007108 DOI
Clegg W, Little IR, Straughan BP. Orthorhombic andhydrous zinc(II) propionate. Acta Crystallogr Sect C Cryst Struct Commun. 1987;43:456–457. doi:10.1107/S0108270187095398 DOI
Goldschmied E, Rae AD, Stephenson NC. The crystal structure of ZnII propionate (C6H10O4Zn)n. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem. 1977;33:2117–2120. doi:10.1107/S0567740877007857 DOI
Favas MC, Kepert DL. Aspects of the stereochemistry of eight-coordination. In: Progress in Inorganic Chemistry. Wiley Online Libraray; 1978:179–249.
Kepert DL. Aspects of the Stereochemistry of Six-Coordination. Vol. 23. New York, USA: John Wiley; 1977.
Blatov VA, Shevchenko AP, Proserpio DM. Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des. 2014;14(7):3576–3586. doi:10.1021/cg500498k DOI
Brown ID. Influence of chemical and spatial constraints on the structures of inorganic compounds. Acta Crystallogr Sect B Struct Commun. 1997;53:381–393. doi:10.1107/S0108768197002474 DOI
Zachariasen WH. Bond lengths in oxygen and halogen compounds of D-element and F-element. J Less-Common Metals. 1978;62:1–7. doi:10.1016/0022-5088(78)90010-3 DOI
Trzesowska A, Kruszynski R, Bartczak TJ. New bond-valence parameters for lanthanides. Acta Crystallogr Sect B Struct Sci Cryst Eng Mat. 2004;60:174–178. doi:10.1107/S0108768104002678 PubMed DOI
Trzesowska A, Kruszynski R, Bartczak TJ. New lanthanide-nitrogen bond-valence parameters. Acta Crystallogr Sect B Struct Sci Cryst Eng Mat. 2005;61:429–434. doi:10.1107/S0108768105016083 PubMed DOI
Trzesowska A, Kruszynski R, Bartczak TJ. Bond-valence parameters of lanthanides. Acta Crystallogr Sect B Struct Commun. 2006;62:745–753. doi:10.1107/S0108768106016429 PubMed DOI
Kruszynski R. Synthesis of coordination compounds via dehalogenation of zinc bromoacetate in presence of some amines. Inorg Chim Acta. 2011;371(1):111–123. doi:10.1016/j.ica.2011.03.049 DOI
Brese NE, Okeeffe M. Bond-valence parameters for solids. Acta Crystallogr Sect B Struct Commun. 1991;47:192–197. doi:10.1107/S0108768190011041 DOI
Brown ID. Chemical and steric constraints in inorganic solids. Acta Crystallogr Sect B Struct Commun. 1992;48:553–572. doi:10.1107/S0108768192002453 DOI
Jensen JO. Vibrational frequencies and structural determinations of hexamethylenetetraamine. Spectroc Acta Pt A Molec Biomolec Spectr. 2002;58(7):1347–1364. doi:10.1016/S1386-1425(01)00585-6 PubMed DOI
Kruszynski R, Sieranski T, Bilinska A, Bernat T, Czubacka E. Alkali metal halogenides coordination compounds with hexamethylenetetramine. Struct Chem. 2012;23(5):1643–1656. doi:10.1007/s11224-012-9961-x DOI
Kruszynski R, Sieranski T, Swiatkowski M, et al. On the coordination behaviour of the hmta toward alkali metal cations in presence of perchlorate anions. J Chem Crystallogr. 2015;45(10–12):484–494. doi:10.1007/s10870-015-0618-7 DOI
Sieranski T, Kruszynski R. On the governing of alkaline earth metal nitrate coordination spheres by hexamethylenetetramine. J Coord Chem. 2013;66(1):42–55. doi:10.1080/00958972.2012.744835 DOI
Sieranski T, Kruszynski R. Magnesium sulphate complexes with hexamethylenetetramine and 1,10-phenanthroline Thermal, structural and spectroscopic properties. J Therm Anal Calorim. 2012;109(1):141–152. doi:10.1007/s10973-011-1693-4 DOI
Taylor Z, Marucho M. The self-adaptation ability of zinc oxide nanoparticles enables reliable cancer treatments. Nanomaterials. 2020;10(2):18. doi:10.3390/nano10020269 PubMed DOI PMC
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics. 2014;4(1):81–89. doi:10.7150/thno.7193 PubMed DOI PMC
Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504. doi:10.1021/mp800049w PubMed DOI
Corazzari I, Gilardino A, Dalmazzo S, Fubini B, Lovisolo D. Localization of CdSe/ZnS quantum dots in the lysosomal acidic compartment of cultured neurons and its impact on viability: potential role of ion release. Toxicol Vitro. 2013;27(2):752–759. doi:10.1016/j.tiv.2012.12.016 PubMed DOI
Hunley C, Marucho M. Electrical double layer properties of spherical oxide nanoparticles. Phys Chem Chem Phys. 2017;19(7):5396–5404. doi:10.1039/C6CP08174F PubMed DOI PMC
Moon SH, Choi WJ, Choi SW, et al. Anti-cancer activity of ZnO chips by sustained zinc ion release. Toxicol Rep. 2016;3:430–438. doi:10.1016/j.toxrep.2016.03.008 PubMed DOI PMC
Dumontel B, Susa F, Limongi T, et al. ZnO nanocrystals shuttled by extracellular vesicles as effective Trojan nano-horses against cancer cells. Nanomedicine. 2019;14(21):2815–2833. doi:10.2217/nnm-2019-0231 PubMed DOI PMC
Wang JF, Gao ST, Wang SY, Xu ZN, Wei LM. Zinc oxide nanoparticles induce toxicity in CAL 27 oral cancer cell lines by activating PINK1/Parkin-mediated mitophagy. Int J Nanomed. 2018;13:3441–3450. doi:10.2147/IJN.S165699 PubMed DOI PMC
Tanino R, Amano Y, Tong XX, et al. Anticancer activity of ZnO nanoparticles against human small-cell lung cancer in an orthotopic mouse model. Mol Cancer Ther. 2020;19(2):502–512. doi:10.1158/1535-7163.MCT-19-0018 PubMed DOI
Hanley C, Layne J, Punnoose A, et al. Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology. 2008;19(29):10. doi:10.1088/0957-4484/19/29/295103 PubMed DOI PMC
Cedervall T, Lynch I, Lindman S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc Natl Acad Sci U S A. 2007;104(7):2050–2055. doi:10.1073/pnas.0608582104 PubMed DOI PMC
Lynch I, Dawson KA. Protein-nanoparticle interactions. Nano Today. 2008;3(1–2):40–47. doi:10.1016/S1748-0132(08)70014-8 DOI
Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7(12):779–786. doi:10.1038/nnano.2012.207 PubMed DOI
Nel AE, Madler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009;8(7):543–557. doi:10.1038/nmat2442 PubMed DOI
Laurenti M, Lamberti A, Genchi GG, et al. Graphene oxide finely tunes the bioactivity and drug delivery of mesoporous ZnO scaffolds. ACS Appl Mater Interfaces. 2019;11(1):449–456. doi:10.1021/acsami.8b20728 PubMed DOI
Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF. Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem. 2012;31(1):93–99. doi:10.1002/etc.708 PubMed DOI PMC
Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology. 2009;20(45):9. doi:10.1088/0957-4484/20/45/455101 PubMed DOI
Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33(6):479–492. doi:10.1016/j.semnephrol.2013.08.001 PubMed DOI PMC
Dobrovoiskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008;8(8):2180–2187. doi:10.1021/nl0805615 PubMed DOI PMC
Luedtke NW, Hwang JS, Nava E, Gut D, Kol M, Tor Y. The DNA and RNA specificity of eilatin Ru(II) complexes as compared to eilatin and ethidium bromide. Nucleic Acids Res. 2003;31(19):5732–5740. doi:10.1093/nar/gkg758 PubMed DOI PMC
Pastre D, Pietrement O, Zozime A, Le Cam E. Study of the DNA/ethidium bromide interactions on mica surface by atomic force microscope: influence of the surface friction. Biopolymers. 2005;77(1):53–62. doi:10.1002/bip.20185 PubMed DOI
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta Mol Cell Res. 2016;1863(12):2977–2992. doi:10.1016/j.bbamcr.2016.09.012 PubMed DOI
Aggarwal V, Tuli HS, Varol A, et al. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. 2019;9(11):26. doi:10.3390/biom9110735 PubMed DOI PMC
Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res. 2010;44(5):479–496. doi:10.3109/10715761003667554 PubMed DOI PMC
Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev. 2014;2014:31. doi:10.1155/2014/360438 PubMed DOI PMC
Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM. ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol. 2010;23(4):733–739. doi:10.1021/tx900203v PubMed DOI