Hematopoietic stem cell transplantation in children and adolescents with GATA2-related myelodysplastic syndrome
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
109005
Wellcome Trust - United Kingdom
PubMed
34244664
PubMed Central
PMC8563415
DOI
10.1038/s41409-021-01374-y
PII: 10.1038/s41409-021-01374-y
Knihovny.cz E-zdroje
- MeSH
- chromozomální delece MeSH
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- myelodysplastické syndromy * genetika terapie MeSH
- nemoc štěpu proti hostiteli * etiologie MeSH
- transkripční faktor GATA2 genetika MeSH
- transplantace hematopoetických kmenových buněk * metody MeSH
- zárodečné mutace MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- GATA2 protein, human MeSH Prohlížeč
- transkripční faktor GATA2 MeSH
GATA2 deficiency is a heterogeneous multi-system disorder characterized by a high risk of developing myelodysplastic syndrome (MDS) and myeloid leukemia. We analyzed the outcome of 65 patients reported to the registry of the European Working Group (EWOG) of MDS in childhood carrying a germline GATA2 mutation (GATA2mut) who had undergone hematopoietic stem cell transplantation (HSCT). At 5 years the probability of overall survival and disease-free survival (DFS) was 75% and 70%, respectively. Non-relapse mortality and relapse equally contributed to treatment failure. There was no evidence of increased incidence of graft-versus-host-disease or excessive rates of infections or organ toxicities. Advanced disease and monosomy 7 (-7) were associated with worse outcome. Patients with refractory cytopenia of childhood (RCC) and normal karyotype showed an excellent outcome (DFS 90%) compared to RCC and -7 (DFS 67%). Comparing outcome of GATA2mut with GATA2wt patients, there was no difference in DFS in patients with RCC and normal karyotype. The same was true for patients with -7 across morphological subtypes. We demonstrate that HSCT outcome is independent of GATA2 germline mutations in pediatric MDS suggesting the application of standard MDS algorithms and protocols. Our data support considering HSCT early in the course of GATA2 deficiency in young individuals.
Department of Hematology St Jude Children's Research Hospital Memphis TN USA
Department of Human Genetics Hannover Medical School Hannover Germany
Department of Pediatric Oncology and Hematology University of Bologna Bologna Italy
Department of Pediatric Oncology Hematology Skåne University Hospital Lund Sweden
Department of Pediatrics Aarhus University Hospital Skejby Aarhus Denmark
Department of Pediatrics Dr von Hauner Children's Hospital University Hospital LMU Munich Germany
Department of Pediatrics St Anna Children's Hospital Medical University of Vienna Vienna Austria
Department of Pediatrics University Hospital Salzburg Paracelsus Medical University Salzburg Austria
German Cancer Consortium Heidelberg and Freiburg Freiburg Germany
Pediatric Hematology and Oncology Hannover Medical School Hannover Germany
Pediatric Hematology Oncology Fondazione IRCCS Policlinico San Matteo Pavia Italy
Princess Maxima Center Diagnostic Laboratory DCOG Laboratory Utrecht The Netherlands
Princess Máxima Center for Pediatric Oncology Utrecht The Netherlands
Zobrazit více v PubMed
Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019;133:1071–85. doi: 10.1182/blood-2018-10-844662. PubMed DOI PMC
Babushok DV, Bessler M, Olson TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk lymphoma. 2016;57:520–36. doi: 10.3109/10428194.2015.1115041. PubMed DOI PMC
Pastor VB, Sahoo SS, Boklan J, Schwabe GC, Saribeyoglu E, Strahm B, et al. Constitutional SAMD9L mutations cause familial myelodysplastic syndrome and transient monosomy 7. Haematologica. 2018;103:427–37. doi: 10.3324/haematol.2017.180778. PubMed DOI PMC
Sahoo SS, Kozyra EJ, Wlodarski MW. Germline predisposition in myeloid neoplasms: unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract Res Clin Haematol. 2020;33(3):101197. doi: 10.1016/j.beha.2020.101197. PubMed DOI PMC
Donadieu J, Lamant M, Fieschi C, de Fontbrune FS, Caye A, Ouachee M, et al. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica. 2018;103:1278–87. doi: 10.3324/haematol.2017.181909. PubMed DOI PMC
Wlodarski MW, Hirabayashi S, Pastor V, Stary J, Hasle H, Masetti R, et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood. 2016;127:1387–97. doi: 10.1182/blood-2015-09-669937. PubMed DOI
Novakova M, Zaliova M, Sukova M, Wlodarski M, Janda A, Fronkova E, et al. Loss of B cells and their precursors is the most constant feature of GATA-2 deficiency in childhood myelodysplastic syndrome. Haematologica. 2016;101:707–16. doi: 10.3324/haematol.2015.137711. PubMed DOI PMC
Wlodarski MW, Collin M, Horwitz MS. GATA2 deficiency and related myeloid neoplasms. Semin Hematol. 2017;54:81–86. doi: 10.1053/j.seminhematol.2017.05.002. PubMed DOI PMC
Cuellar-Rodriguez J, Gea-Banacloche J, Freeman AF, Hsu AP, Zerbe CS, Calvo KR, et al. Successful allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Blood. 2011;118:3715–20. doi: 10.1182/blood-2011-06-365049. PubMed DOI PMC
Parta M, Shah NN, Baird K, Rafei H, Calvo KR, Hughes T, et al. Allogeneic hematopoietic stem cell transplantation for GATA2 deficiency using a busulfan-based regimen. Biol Blood Marrow Transplant. 2018;24:1250–9. doi: 10.1016/j.bbmt.2018.01.030. PubMed DOI PMC
Grossman J, Cuellar-Rodriguez J, Gea-Banacloche J, Zerbe C, Calvo K, Hughes T, et al. Nonmyeloablative allogeneic hematopoietic stem cell transplantation for GATA2 deficiency. Biol Blood Marrow Transplant. 2014;20:1940–8. doi: 10.1016/j.bbmt.2014.08.004. PubMed DOI PMC
Mallhi K, Dix DB, Niederhoffer KY, Armstrong L, Rozmus J. Successful umbilical cord blood hematopoietic stem cell transplantation in pediatric patients with MDS/AML associated with underlying GATA2 mutations: two case reports and review of literature. Pediatr Transplant. 2016;20:1004–7. doi: 10.1111/petr.12764. PubMed DOI
Ramzan M, Lowry J, Courtney S, Krueger J, Schechter Finkelstein T, Ali M. Successful myeloablative matched unrelated donor hematopoietic stem cell transplantation in a young girl with GATA2 deficiency and emberger syndrome. J Pediatr Hematol/Oncol. 2017;39:230–2. doi: 10.1097/MPH.0000000000000737. PubMed DOI
Rastogi N, Abraham RS, Chadha R, Thakkar D, Kohli S, Nivargi S, et al. Successful nonmyeloablative allogeneic stem cell transplant in a child with emberger syndrome and GATA2 mutation. J Pediatr Hematol/Oncol. 2018;40:e383–e388. doi: 10.1097/MPH.0000000000000995. PubMed DOI
Saida S, Umeda K, Yasumi T, Matsumoto A, Kato I, Hiramatsu H, et al. Successful reduced-intensity stem cell transplantation for GATA2 deficiency before progression of advanced MDS. Pediatr Transplant. 2016;20:333–6. doi: 10.1111/petr.12667. PubMed DOI
Kozyra EJ, Pastor VB, Lefkopoulos S, Sahoo SS, Busch H, Voss RK, et al. Synonymous GATA2 mutations result in selective loss of mutated RNA and are common in patients with GATA2 deficiency. Leukemia. 2020 doi: 10.1038/s41375-020-0899-5. PubMed DOI PMC
Baumann INC, Bennett, JM. Childhood myelodysplastic syndrome. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, editors. WHO classification of tumours of haematopoietic and lymphoid tissues, revised 4th edn. Lyon: International Agency of Reaearch on Cancer (IARC); 2017. p. 116–20.
Gohring G, Michalova K, Beverloo HB, Betts D, Harbott J, Haas OA, et al. Complex karyotype newly defined: the strongest prognostic factor in advanced childhood myelodysplastic syndrome. Blood. 2010;116:3766–9. doi: 10.1182/blood-2010-04-280313. PubMed DOI
Klein JP, Andersen PK. Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function. Biometrics. 2005;61:223–9. doi: 10.1111/j.0006-341X.2005.031209.x. PubMed DOI
Pepe MS, Mori M. Kaplan-Meier, marginal or conditional-probability curves in summarizing competing risks failure time data. Stat Med. 1993;12:737–51. doi: 10.1002/sim.4780120803. PubMed DOI
Gray RJ. A class of K-sample tests for comparing the cumulative incidence of a competing risk. Ann Stat. 1988;16:1141–54. doi: 10.1214/aos/1176350951. DOI
Cox DR. Regression models and life-tables. J R Stat Soc B. 1972;34:187.
Simonis A, Fux M, Nair G, Mueller NJ, Haralambieva E, Pabst T, et al. Allogeneic hematopoietic cell transplantation in patients with GATA2 deficiency-a case report and comprehensive review of the literature. Ann Hematol. 2018;97:1961–73. doi: 10.1007/s00277-018-3388-4. PubMed DOI
Hofmann I, Avagyan S, Stetson A, Guo D, Al-Sayegh H, London WB, et al. Comparison of outcomes of myeloablative allogeneic stem cell transplantation for pediatric patients with bone marrow failure, myelodysplastic syndrome and acute myeloid leukemia with and without germline GATA2 mutations. Biol Blood Marrow Transplant. 2020;26:1124–30. doi: 10.1016/j.bbmt.2020.02.015. PubMed DOI PMC
Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123:809–21. doi: 10.1182/blood-2013-07-515528. PubMed DOI PMC
Locatelli F, Strahm B. How I treat myelodysplastic syndromes of childhood. Blood. 2018;131:1406–14. doi: 10.1182/blood-2017-09-765214. PubMed DOI
Bodor C, Renneville A, Smith M, Charazac A, Iqbal S, Etancelin P, et al. Germ-line GATA2 p.THR354MET mutation in familial myelodysplastic syndrome with acquired monosomy 7 and ASXL1 mutation demonstrating rapid onset and poor survival. Haematologica. 2012;97:890–4. doi: 10.3324/haematol.2011.054361. PubMed DOI PMC
West RR, Hsu AP, Holland SM, Cuellar-Rodriguez J, Hickstein DD. Acquired ASXL1 mutations are common in patients with inherited GATA2 mutations and correlate with myeloid transformation. Haematologica. 2014;99:276–81. doi: 10.3324/haematol.2013.090217. PubMed DOI PMC