From head micro-motions towards CSF dynamics and non-invasive intracranial pressure monitoring
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34253803
PubMed Central
PMC8275772
DOI
10.1038/s41598-021-93740-5
PII: 10.1038/s41598-021-93740-5
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- intrakraniální hypertenze patofyziologie MeSH
- intrakraniální tlak fyziologie MeSH
- lebka patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- monitorování fyziologických funkcí MeSH
- senioři MeSH
- traumatické poranění mozku patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Continuous monitoring of the intracranial pressure (ICP) is essential in neurocritical care. There are a variety of ICP monitoring systems currently available, with the intraventricular fluid filled catheter transducer currently representing the "gold standard". As the placement of catheters is associated with the attendant risk of infection, hematoma formation, and seizures, there is a need for a reliable, non-invasive alternative. In the present study we suggest a unique theoretical framework based on differential geometry invariants of cranial micro-motions with the potential for continuous non-invasive ICP monitoring in conservative traumatic brain injury (TBI) treatment. As a proof of this concept, we have developed a pillow with embedded mechanical sensors and collected an extensive dataset (> 550 h on 24 TBI coma patients) of cranial micro-motions and the reference intraparenchymal ICP. From the multidimensional pulsatile curve we calculated the first Cartan curvature and constructed a "fingerprint" image (Cartan map) associated with the cerebrospinal fluid (CSF) dynamics. The Cartan map features maxima bands corresponding to a pressure wave reflection corresponding to a detectable skull tremble. We give evidence for a statistically significant and patient-independent correlation between skull micro-motions and ICP time derivative. Our unique differential geometry-based method yields a broader and global perspective on intracranial CSF dynamics compared to rather local catheter-based measurement and has the potential for wider applications.
Department of Physics University of Hradec Králové Hradec Králové Czech Republic
Department of Technical Development LINET Spol S R O Slaný Czech Republic
Zobrazit více v PubMed
Canac N, Jalaleddini K, Thorpe SG, Thibeault CM, Hamilton RB. Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring. Fluids Barriers CNS. 2020;17:40. doi: 10.1186/s12987-020-00201-8. PubMed DOI PMC
Roldán M, Abay TY, Kyriacou PA. Non-invasive techniques for multimodal monitoring in traumatic brain injury: Systematic review and meta-analysis. J. Neurotrauma. 2020;37:2445–2453. doi: 10.1089/neu.2020.7266. PubMed DOI
Sallam A, et al. The diagnostic accuracy of noninvasive methods to measure the intracranial pressure: A systematic review and meta-analysis. Anesth. Analg. 2021;132:686–695. doi: 10.1213/ANE.0000000000005189. PubMed DOI
Geeraerts T, Duranteau J, Benhamou D. Ocular sonography in patients with raised intracranialpressure: The papilloedema revisited. Crit. Care. 2008;12:150. doi: 10.1186/cc6893. PubMed DOI PMC
Khan MN, Shallwani H, Khan MU, Shamim MS. Noninvasive monitoring intracranial pressure: A review of available modalities. Surg. Neurol. Int. 2017;8:51. doi: 10.4103/sni.sni_403_16. PubMed DOI PMC
Seyed AS, et al. The relation between intracranial and intraocular pressures: Study of 50 patients. Ann. Neurol. 2006;59:867–870. doi: 10.1002/ana.20856. PubMed DOI
Golan S, et al. Poor correlation between intracranial pressure and intraocular pressure by hand-heldtonometry. Clin. Ophthalmol. 2013;7:1083–1087. doi: 10.2147/OPTH.S38910. PubMed DOI PMC
Zhen L, et al. Intraocular pressure vs intracranial pressure in disease conditions: A prospective cohort study (Beijing iCOP study) BMC Neurol. 2012;12:66. doi: 10.1186/1471-2377-12-66. PubMed DOI PMC
Firsching R, et al. Noninvasive assessment of intracranial pressure with venous ophthalmodynamometry. Clinical article. J. Neurosurg. 2011;115:371–374. doi: 10.3171/2011.3.JNS101275. PubMed DOI
Bruce BB. Noninvasive assessment of cerebrospinal fluid pressure. J. Neuro-Opthalmol. 2014;34:288–294. doi: 10.1097/WNO.0000000000000153. PubMed DOI PMC
Marshall LF, Barba D, Toole BM, Bowers SA. The oval pupil: Clinical significance and relationship to intracranial hypertension. J. Neurosurg. 1983;58:566–568. doi: 10.3171/jns.1983.58.4.0566. PubMed DOI
Chen JW, et al. Pupillary reactivity as an early indicator of increased intracranial pressure: The introduction of the Neurological pupil index. Surg. Neurol. Int. 2011;2:82. doi: 10.4103/2152-7806.82248. PubMed DOI PMC
Stettin E, Paulat K, Schulz C, Kunz U, Mauer UM. Noninvasive intracranial pressure measurement using infrasonic emissions from the tympanic membrane. J. Clin. Monitor. Comput. 2011;25:203–210. doi: 10.1007/s10877-011-9297-x. PubMed DOI
Voss SE, Horton NJ, Tabucchi THP, Folowosele FO, Shera CA. Posture-induced changes in distortion-product otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure. Neurocrit. Care. 2006;4:251–257. doi: 10.1385/NCC:4:3:251. PubMed DOI
Wu J, He W, Chen W-M, Zhu L. Research on simulation and experiment of noninvasive intracranial pressure monitoring based on acoustoelasticity effects. Med. Devices (Auckl.) 2013;6:123–131. PubMed PMC
Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording offlow velocity in basal cerebral arteries. J. Neurosurg. 1982;57:769–774. doi: 10.3171/jns.1982.57.6.0769. PubMed DOI
Klingelhöfer J, Conrad B, Benecke R, Sander D. Intracranial flow patterns at increasing intracranial pressure. Klin. Wochenschr. 1987;65:542–545. doi: 10.1007/BF01727619. PubMed DOI
Rosenberg JB, Shiloh AL, Savel RH, Eisen LA. Non-invasive methods of estimating intracranial pressure. Neurocrit. Care. 2011;15:599–608. doi: 10.1007/s12028-011-9545-4. PubMed DOI
Behrens A, et al. Transcranial doppler pulsatility index: Not an accurate method to assess intracranial pressure. Neurosurgery. 2010;66:1050–1057. doi: 10.1227/01.NEU.0000369519.35932.F2. PubMed DOI
Michaeli D, Rappaport ZH. Tissue resonance analysis; A novel method for noninvasive monitoring of intracranial pressure. Technical note. J. Neurosurg. 2002;96:1132–1137. doi: 10.3171/jns.2002.96.6.1132. PubMed DOI
Ragauskas, A., Daubaris, G., Dziugys, A., Azelis, V. & Gedrimas, V. Innovative non-invasive method for absolute intracranial pressure measurement without calibration. In: Intracranial pressure and brain monitoring XII. Springer, 357–361 (2005). PubMed
Ragauskas A, et al. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology. 2012;78:1684–1691. doi: 10.1212/WNL.0b013e3182574f50. PubMed DOI
Bershad EM, et al. Clinical validation of a transcranial Doppler-based noninvasive intracranial pressure meter: a prospective cross-sectional study. World Neurosurg. 2016;89:647–653. doi: 10.1016/j.wneu.2015.11.102. PubMed DOI
Wiegand C, Richards P. Measurement of intracranial pressure in children: A critical review of current methods. Dev. Med. Child. Neurol. 2007;49:935–941. doi: 10.1111/j.1469-8749.2007.00935.x. PubMed DOI
Amantini A, et al. Neurophysiological monitoring in adult and pediatric intensive care. Minerva Anestesiol. 2012;78:1067–1075. PubMed
Chen H, Wang J, Mao S, Dong W, Yang H. A new method of intracranial pressure monitoring by EEG power spectrum analysis. Can. J. Neurol. Sci. 2012;39:483–487. doi: 10.1017/S0317167100013998. PubMed DOI
Lescot T, et al. The relationship of intracranial pressure Lundberg waves to electroencephalograph fluctuations in patients with severe head trauma. Acta Neurochir. (Wien) 2004;147:125–129. doi: 10.1007/s00701-004-0355-8. PubMed DOI
Ghosh A, Elwell C, Smith M. Review article: Cerebral near-infrared spectroscopy in adults: A work in progress. Anesth. Analg. 2012;115:1373–1383. doi: 10.1213/ANE.0b013e31826dd6a6. PubMed DOI
Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD. Near-infrared spectroscopy use in patients with head injury. J. Neurosurg. 1995;83:963–970. doi: 10.3171/jns.1995.83.6.0963. PubMed DOI
Andersson L, Sjölund J, Nilsson J. Flash visual evoked potentials are unreliable as markers of ICP due to high variability in normal subjects. Acta Neurochir. 2012;154:121–127. doi: 10.1007/s00701-011-1152-9. PubMed DOI
Burgess S, Abu-Laban RB, Slavik RS, Vu EN, Zed PJ. A systematic review of randomized controlled trials comparing hypertonic sodium solutions and mannitol for traumatic brain injury: Implications for emergency department management. Ann. Pharmacother. 2016;50:291–300. doi: 10.1177/1060028016628893. PubMed DOI
Koenig MA. Cerebral edema and elevated intracranial pressure. Continuum. 2018;24:1588–1602. PubMed
Sacco TL, Delibert SA. Management of intracranial pressure: Part I: pharmacologic interventions. Dimens. Crit. Care Nurs. 2018;37:120–129. doi: 10.1097/DCC.0000000000000293. PubMed DOI
Sacco TL, Davis JG. Management of intracranial pressure. Part II: nonpharmacologic interventions. Dimens. Crit. Care Nurs. 2019;38:61–69. doi: 10.1097/DCC.0000000000000341. PubMed DOI
Freeman WD. Management of intracranial pressure. Continuum. 2015;21:1299–1323. PubMed
Kim Y-I, et al. The effect of barbiturate coma therapy for the patients with severe intracranial hypertension: A 10-year experience. J. Korean Neurosurg. Soc. 2008;44:141–145. doi: 10.3340/jkns.2008.44.3.141. PubMed DOI PMC
Carney N, et al. Guidelines for the management of severe traumatic brain injury. Fourth Edition. Neurosurgery. 2017;80:6–15. doi: 10.1227/NEU.0000000000001432. PubMed DOI
Brain Trauma Foundation et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J. Neurotrauma24 Suppl 1, S55-S58 (2007). PubMed
Cnossen MC, et al. Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: A survey in 66 neurotrauma centers participating in the CENTER-TBI study. Crit. Care. 2017;21:233. doi: 10.1186/s13054-017-1816-9. PubMed DOI PMC
Tavakoli S, Peitz G, Ares W, Hafeez S, Grandhi R. Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg. Focus. 2017;43:6. doi: 10.3171/2017.8.FOCUS17450. PubMed DOI
Nag DS, Sahu S, Swain A, Kant S. Intracranial pressure monitoring: Gold standard and recent innovations. World J. Clin. Cases. 2019;7:1535–1553. doi: 10.12998/wjcc.v7.i13.1535. PubMed DOI PMC
O'Rourke MF. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J. Appl. Physiol. 1967;23:139–149. doi: 10.1152/jappl.1967.23.2.139. PubMed DOI
Aggarwal P, et al. Histological study of medium sized arteries of neck in relation with their pulse pressure and pulsatory power. J. Evol. Med. Dental Sci. 2014;3:14270–14277. doi: 10.14260/jemds/2014/3914. DOI
Sato K, Ogoh S, Hirasawa A, Oue A, Sadamoto T. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J. Physiol. 2011;589:2847–2856. doi: 10.1113/jphysiol.2010.204461. PubMed DOI PMC