From head micro-motions towards CSF dynamics and non-invasive intracranial pressure monitoring

. 2021 Jul 12 ; 11 (1) : 14349. [epub] 20210712

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34253803
Odkazy

PubMed 34253803
PubMed Central PMC8275772
DOI 10.1038/s41598-021-93740-5
PII: 10.1038/s41598-021-93740-5
Knihovny.cz E-zdroje

Continuous monitoring of the intracranial pressure (ICP) is essential in neurocritical care. There are a variety of ICP monitoring systems currently available, with the intraventricular fluid filled catheter transducer currently representing the "gold standard". As the placement of catheters is associated with the attendant risk of infection, hematoma formation, and seizures, there is a need for a reliable, non-invasive alternative. In the present study we suggest a unique theoretical framework based on differential geometry invariants of cranial micro-motions with the potential for continuous non-invasive ICP monitoring in conservative traumatic brain injury (TBI) treatment. As a proof of this concept, we have developed a pillow with embedded mechanical sensors and collected an extensive dataset (> 550 h on 24 TBI coma patients) of cranial micro-motions and the reference intraparenchymal ICP. From the multidimensional pulsatile curve we calculated the first Cartan curvature and constructed a "fingerprint" image (Cartan map) associated with the cerebrospinal fluid (CSF) dynamics. The Cartan map features maxima bands corresponding to a pressure wave reflection corresponding to a detectable skull tremble. We give evidence for a statistically significant and patient-independent correlation between skull micro-motions and ICP time derivative. Our unique differential geometry-based method yields a broader and global perspective on intracranial CSF dynamics compared to rather local catheter-based measurement and has the potential for wider applications.

Zobrazit více v PubMed

Canac N, Jalaleddini K, Thorpe SG, Thibeault CM, Hamilton RB. Review: pathophysiology of intracranial hypertension and noninvasive intracranial pressure monitoring. Fluids Barriers CNS. 2020;17:40. doi: 10.1186/s12987-020-00201-8. PubMed DOI PMC

Roldán M, Abay TY, Kyriacou PA. Non-invasive techniques for multimodal monitoring in traumatic brain injury: Systematic review and meta-analysis. J. Neurotrauma. 2020;37:2445–2453. doi: 10.1089/neu.2020.7266. PubMed DOI

Sallam A, et al. The diagnostic accuracy of noninvasive methods to measure the intracranial pressure: A systematic review and meta-analysis. Anesth. Analg. 2021;132:686–695. doi: 10.1213/ANE.0000000000005189. PubMed DOI

Geeraerts T, Duranteau J, Benhamou D. Ocular sonography in patients with raised intracranialpressure: The papilloedema revisited. Crit. Care. 2008;12:150. doi: 10.1186/cc6893. PubMed DOI PMC

Khan MN, Shallwani H, Khan MU, Shamim MS. Noninvasive monitoring intracranial pressure: A review of available modalities. Surg. Neurol. Int. 2017;8:51. doi: 10.4103/sni.sni_403_16. PubMed DOI PMC

Seyed AS, et al. The relation between intracranial and intraocular pressures: Study of 50 patients. Ann. Neurol. 2006;59:867–870. doi: 10.1002/ana.20856. PubMed DOI

Golan S, et al. Poor correlation between intracranial pressure and intraocular pressure by hand-heldtonometry. Clin. Ophthalmol. 2013;7:1083–1087. doi: 10.2147/OPTH.S38910. PubMed DOI PMC

Zhen L, et al. Intraocular pressure vs intracranial pressure in disease conditions: A prospective cohort study (Beijing iCOP study) BMC Neurol. 2012;12:66. doi: 10.1186/1471-2377-12-66. PubMed DOI PMC

Firsching R, et al. Noninvasive assessment of intracranial pressure with venous ophthalmodynamometry. Clinical article. J. Neurosurg. 2011;115:371–374. doi: 10.3171/2011.3.JNS101275. PubMed DOI

Bruce BB. Noninvasive assessment of cerebrospinal fluid pressure. J. Neuro-Opthalmol. 2014;34:288–294. doi: 10.1097/WNO.0000000000000153. PubMed DOI PMC

Marshall LF, Barba D, Toole BM, Bowers SA. The oval pupil: Clinical significance and relationship to intracranial hypertension. J. Neurosurg. 1983;58:566–568. doi: 10.3171/jns.1983.58.4.0566. PubMed DOI

Chen JW, et al. Pupillary reactivity as an early indicator of increased intracranial pressure: The introduction of the Neurological pupil index. Surg. Neurol. Int. 2011;2:82. doi: 10.4103/2152-7806.82248. PubMed DOI PMC

Stettin E, Paulat K, Schulz C, Kunz U, Mauer UM. Noninvasive intracranial pressure measurement using infrasonic emissions from the tympanic membrane. J. Clin. Monitor. Comput. 2011;25:203–210. doi: 10.1007/s10877-011-9297-x. PubMed DOI

Voss SE, Horton NJ, Tabucchi THP, Folowosele FO, Shera CA. Posture-induced changes in distortion-product otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure. Neurocrit. Care. 2006;4:251–257. doi: 10.1385/NCC:4:3:251. PubMed DOI

Wu J, He W, Chen W-M, Zhu L. Research on simulation and experiment of noninvasive intracranial pressure monitoring based on acoustoelasticity effects. Med. Devices (Auckl.) 2013;6:123–131. PubMed PMC

Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording offlow velocity in basal cerebral arteries. J. Neurosurg. 1982;57:769–774. doi: 10.3171/jns.1982.57.6.0769. PubMed DOI

Klingelhöfer J, Conrad B, Benecke R, Sander D. Intracranial flow patterns at increasing intracranial pressure. Klin. Wochenschr. 1987;65:542–545. doi: 10.1007/BF01727619. PubMed DOI

Rosenberg JB, Shiloh AL, Savel RH, Eisen LA. Non-invasive methods of estimating intracranial pressure. Neurocrit. Care. 2011;15:599–608. doi: 10.1007/s12028-011-9545-4. PubMed DOI

Behrens A, et al. Transcranial doppler pulsatility index: Not an accurate method to assess intracranial pressure. Neurosurgery. 2010;66:1050–1057. doi: 10.1227/01.NEU.0000369519.35932.F2. PubMed DOI

Michaeli D, Rappaport ZH. Tissue resonance analysis; A novel method for noninvasive monitoring of intracranial pressure. Technical note. J. Neurosurg. 2002;96:1132–1137. doi: 10.3171/jns.2002.96.6.1132. PubMed DOI

Ragauskas, A., Daubaris, G., Dziugys, A., Azelis, V. & Gedrimas, V. Innovative non-invasive method for absolute intracranial pressure measurement without calibration. In: Intracranial pressure and brain monitoring XII. Springer, 357–361 (2005). PubMed

Ragauskas A, et al. Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neurology. 2012;78:1684–1691. doi: 10.1212/WNL.0b013e3182574f50. PubMed DOI

Bershad EM, et al. Clinical validation of a transcranial Doppler-based noninvasive intracranial pressure meter: a prospective cross-sectional study. World Neurosurg. 2016;89:647–653. doi: 10.1016/j.wneu.2015.11.102. PubMed DOI

Wiegand C, Richards P. Measurement of intracranial pressure in children: A critical review of current methods. Dev. Med. Child. Neurol. 2007;49:935–941. doi: 10.1111/j.1469-8749.2007.00935.x. PubMed DOI

Amantini A, et al. Neurophysiological monitoring in adult and pediatric intensive care. Minerva Anestesiol. 2012;78:1067–1075. PubMed

Chen H, Wang J, Mao S, Dong W, Yang H. A new method of intracranial pressure monitoring by EEG power spectrum analysis. Can. J. Neurol. Sci. 2012;39:483–487. doi: 10.1017/S0317167100013998. PubMed DOI

Lescot T, et al. The relationship of intracranial pressure Lundberg waves to electroencephalograph fluctuations in patients with severe head trauma. Acta Neurochir. (Wien) 2004;147:125–129. doi: 10.1007/s00701-004-0355-8. PubMed DOI

Ghosh A, Elwell C, Smith M. Review article: Cerebral near-infrared spectroscopy in adults: A work in progress. Anesth. Analg. 2012;115:1373–1383. doi: 10.1213/ANE.0b013e31826dd6a6. PubMed DOI

Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD. Near-infrared spectroscopy use in patients with head injury. J. Neurosurg. 1995;83:963–970. doi: 10.3171/jns.1995.83.6.0963. PubMed DOI

Andersson L, Sjölund J, Nilsson J. Flash visual evoked potentials are unreliable as markers of ICP due to high variability in normal subjects. Acta Neurochir. 2012;154:121–127. doi: 10.1007/s00701-011-1152-9. PubMed DOI

Burgess S, Abu-Laban RB, Slavik RS, Vu EN, Zed PJ. A systematic review of randomized controlled trials comparing hypertonic sodium solutions and mannitol for traumatic brain injury: Implications for emergency department management. Ann. Pharmacother. 2016;50:291–300. doi: 10.1177/1060028016628893. PubMed DOI

Koenig MA. Cerebral edema and elevated intracranial pressure. Continuum. 2018;24:1588–1602. PubMed

Sacco TL, Delibert SA. Management of intracranial pressure: Part I: pharmacologic interventions. Dimens. Crit. Care Nurs. 2018;37:120–129. doi: 10.1097/DCC.0000000000000293. PubMed DOI

Sacco TL, Davis JG. Management of intracranial pressure. Part II: nonpharmacologic interventions. Dimens. Crit. Care Nurs. 2019;38:61–69. doi: 10.1097/DCC.0000000000000341. PubMed DOI

Freeman WD. Management of intracranial pressure. Continuum. 2015;21:1299–1323. PubMed

Kim Y-I, et al. The effect of barbiturate coma therapy for the patients with severe intracranial hypertension: A 10-year experience. J. Korean Neurosurg. Soc. 2008;44:141–145. doi: 10.3340/jkns.2008.44.3.141. PubMed DOI PMC

Carney N, et al. Guidelines for the management of severe traumatic brain injury. Fourth Edition. Neurosurgery. 2017;80:6–15. doi: 10.1227/NEU.0000000000001432. PubMed DOI

Brain Trauma Foundation et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J. Neurotrauma24 Suppl 1, S55-S58 (2007). PubMed

Cnossen MC, et al. Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: A survey in 66 neurotrauma centers participating in the CENTER-TBI study. Crit. Care. 2017;21:233. doi: 10.1186/s13054-017-1816-9. PubMed DOI PMC

Tavakoli S, Peitz G, Ares W, Hafeez S, Grandhi R. Complications of invasive intracranial pressure monitoring devices in neurocritical care. Neurosurg. Focus. 2017;43:6. doi: 10.3171/2017.8.FOCUS17450. PubMed DOI

Nag DS, Sahu S, Swain A, Kant S. Intracranial pressure monitoring: Gold standard and recent innovations. World J. Clin. Cases. 2019;7:1535–1553. doi: 10.12998/wjcc.v7.i13.1535. PubMed DOI PMC

O'Rourke MF. Pressure and flow waves in systemic arteries and the anatomical design of the arterial system. J. Appl. Physiol. 1967;23:139–149. doi: 10.1152/jappl.1967.23.2.139. PubMed DOI

Aggarwal P, et al. Histological study of medium sized arteries of neck in relation with their pulse pressure and pulsatory power. J. Evol. Med. Dental Sci. 2014;3:14270–14277. doi: 10.14260/jemds/2014/3914. DOI

Sato K, Ogoh S, Hirasawa A, Oue A, Sadamoto T. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J. Physiol. 2011;589:2847–2856. doi: 10.1113/jphysiol.2010.204461. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...