Biological scaling in green algae: the role of cell size and geometry
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
34257365
PubMed Central
PMC8277887
DOI
10.1038/s41598-021-93816-2
PII: 10.1038/s41598-021-93816-2
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce MeSH
- biologické modely MeSH
- Chlorophyta * růst a vývoj metabolismus MeSH
- fraktály MeSH
- velikost buňky * MeSH
- Publikační typ
- časopisecké články MeSH
The Metabolic Scaling Theory (MST), hypothesizes limitations of resource-transport networks in organisms and predicts their optimization into fractal-like structures. As a result, the relationship between population growth rate and body size should follow a cross-species universal quarter-power scaling. However, the universality of metabolic scaling has been challenged, particularly across transitions from bacteria to protists to multicellulars. The population growth rate of unicellulars should be constrained by external diffusion, ruling nutrient uptake, and internal diffusion, operating nutrient distribution. Both constraints intensify with increasing size possibly leading to shifting in the scaling exponent. We focused on unicellular algae Micrasterias. Large size and fractal-like morphology make this species a transitional group between unicellular and multicellular organisms in the evolution of allometry. We tested MST predictions using measurements of growth rate, size, and morphology-related traits. We showed that growth scaling of Micrasterias follows MST predictions, reflecting constraints by internal diffusion transport. Cell fractality and density decrease led to a proportional increase in surface area with body mass relaxing external constraints. Complex allometric optimization enables to maintain quarter-power scaling of population growth rate even with a large unicellular plan. Overall, our findings support fractality as a key factor in the evolution of biological scaling.
CEFE Univ Montpellier CNRS EPHE IRD 1919 Route de Mende 34293 Montpellier France
Department of Botany Faculty of Science Charles University Benátská 2 Prague Czech Republic
Zobrazit více v PubMed
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Toward a metabolic theory of ecology. Ecology. 2004;85:1771–1789. doi: 10.1890/03-9000. DOI
Savage VM, Deeds EJ, Fontana W. Sizing up allometric scaling theory. PLoS Comput. Biol. 2008;4:1–17. doi: 10.1371/journal.pcbi.1000171. PubMed DOI PMC
West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276:122–126. doi: 10.1126/science.276.5309.122. PubMed DOI
West GB, Enquist BJ, Brown JH. The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science. 1999;284:1677–1679. doi: 10.1126/science.284.5420.1677. PubMed DOI
DeLong JP, Okie JG, Moses ME, Sibly RM, Brown JH. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. U. S. A. 2010;107:12941–12945. doi: 10.1073/pnas.1007783107. PubMed DOI PMC
Blueweiss L, et al. Relationships between body size and some life history parametrs. Oecologia. 1978;37:257–272. doi: 10.1007/BF00344996. PubMed DOI
Fenchel T. Intrinsic rate of natural increase: The relationship with body size. Oecologia. 1974;14:317–326. doi: 10.1007/BF00384576. PubMed DOI
Savage VM, et al. The predominance of quarter-power scaling in biology. Funct. Ecol. 2004;18:257–282. doi: 10.1111/j.0269-8463.2004.00856.x. DOI
Niklas KJ. Plant Allometry: The Scaling of form and Process. University of Chicago Press; 1994.
Enquist BJ, Tiffney BH, Niklas KJ. Metabolic scaling and the evolutionary dynamics of plant size, form, and diversity: Toward a synthesis of ecology, evolution, and paleontology. Int. J. Plant Sci. 2007;168:729–749. doi: 10.1086/513479. DOI
Kempes C, Dutkiewicz S, Follows MJ. Growth, metabolic partitioning, and the size of microorganisms. Proc. Natl. Acad. Sci. U. S. A. 2012;109:495–500. doi: 10.1073/pnas.1115585109. PubMed DOI PMC
West GB, Brown JH. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J. Exp. Biol. 2005;208:1575–1592. doi: 10.1242/jeb.01589. PubMed DOI
Yoshiyama K, Klausmeier CA. Optimal cell size for resource uptake in fluids: A new facet of resource competition. Am. Nat. 2008;171:59–70. doi: 10.1086/523950. PubMed DOI
Gallet R, et al. The evolution of bacterial cell size: the internal diffusion-constraint hypothesis. ISME J. 2017;11:1559–1568. doi: 10.1038/ismej.2017.35. PubMed DOI PMC
Beardall J, et al. Allometry and stoichiometry of unicellular, colonial and multicellular phytoplankton. New Phytol. 2009;181:295–309. doi: 10.1111/j.1469-8137.2008.02660.x. PubMed DOI
Wirtz KW. Non-uniform scaling in phytoplankton growth rate due to intracellular light and CO 2 decline. J. Plankton Res. 2011;33:1325–1341. doi: 10.1093/plankt/fbr021. DOI
Okie JG. General models for the spectra of surface area scaling strategies of cells and organisms: fractality, geometric dissimilitude, and internalization. Am. Nat. 2013;181:421–439. doi: 10.1086/669150. PubMed DOI
Neustupa J. Static allometry of unicellular green algae: Scaling of cellular surface area and volume in the genus Micrasterias (Desmidiales) J. Evol. Biol. 2015;29:292–305. doi: 10.1111/jeb.12781. PubMed DOI
Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry. Biol. Rev. Camb. Philos. Soc. 2006;81:259–291. doi: 10.1017/S1464793106007007. PubMed DOI
Savage VM, Gillooly JF, Brown JH, Charnov EL, West GB. Effects of body size and temperature on population growth. Am. Nat. 2004;163:429–441. doi: 10.1086/381872. PubMed DOI
Karp-Boss L, Boss E. The elongated, the squat and the spherical: selective pressures for phytoplankton shape. In: Kana TM, Glibert PM, editors. Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective. Cham: Springer; 2016. pp. 171–183.
Young KD. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 2006;70:660–703. doi: 10.1128/MMBR.00001-06. PubMed DOI PMC
Ryabov A, et al. Shape matters: the relationship between cell geometry and diversity in phytoplankton. Ecol. Lett. 2021;24:847–861. doi: 10.1111/ele.13680. PubMed DOI
Menden-Deuer S, Lessard EJ. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 2000;45:569–579. doi: 10.4319/lo.2000.45.3.0569. DOI
Banavar JR, et al. A general basis for quarter-power scaling in animals. Proc. Natl. Acad. Sci. U. S. A. 2010;107:15816–15820. doi: 10.1073/pnas.1009974107. PubMed DOI PMC
Niklas KJ. Size-dependent variations in plant growth rates and the ‘3/4-power rule’. Am. J. Bot. 1994;81:134–144. doi: 10.1002/j.1537-2197.1994.tb15422.x. DOI
Marañón E, et al. Unimodal size scaling of phytoplankton growth and the size dependence of nutrient uptake and use. Ecol. Lett. 2013;16:371–379. doi: 10.1111/ele.12052. PubMed DOI
Niklas KJ, Cobb ED. Size-dependent variation in plant form. Curr. Biol. 2017;27:R900–R905. doi: 10.1016/j.cub.2017.02.007. PubMed DOI
Schwartzenberg VK, Bornfleth S, Linder AC, Hanelt D. The Microalgae and Zygnematophyceae Collection Hamburg (MZCH)—living cultures for research on rare streptophytic algae. Arch. Hydrobiol. Suppl. Algol. Stud. 2013;142:77–107.
Škaloud P, Neustupa J. CAUP—The Culture Collection of Algae of Charles University in Prague. Charles University; 2009.
Kahm M, Hasenbrink G, Ludwig J, Lichtenberg-Fraté H, Kschischo M. grofit: Fitting biological growth curves with R. J. Stat. Softw. 2010;33:1–21. doi: 10.18637/jss.v033.i07. PubMed DOI
Petzoldt, T. Growthrates: Estimate Growth Rates from Experimental Data. R package version 0.7.2. (2018).
Hillebrand H, Dürselen C-D, Kirschtel D, Pollingher U, Zohary T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 1999;35:403–424. doi: 10.1046/j.1529-8817.1999.3520403.x. DOI
Neustupa J, Černá K, Šťastný J. The effects of aperiodic desiccation on the diversity of benthic desmid assemblages in a lowland peat bog. Biodivers. Conserv. 2011;20:1695–1711. doi: 10.1007/s10531-011-0055-7. DOI
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
R Core Team. R: A Language and Environment for Statistical Computing. (2014).
Osserman R. The isoperimetric inequality. Bull. Am. Math. Soc. 1978;84:1182–1238. doi: 10.1090/S0002-9904-1978-14553-4. DOI
Klamkin MS. Corrections to Ëlementary Approximations to the Area of N-Dimensional Ellipsoids. Am. Math. Mon. 2006;83:478.
Warton DI, Duursma RA, Falster DS, Taskinen S. smatr 3—An R package for estimation and inference about allometric lines. Methods Ecol. Evol. 2012;3:257–259. doi: 10.1111/j.2041-210X.2011.00153.x. DOI
Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things) Methods Ecol. Evol. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
Škaloud P, Nemjová K, Veselá J, Černá K, Neustupa J. A multilocus phylogeny of the desmid genus Micrasterias (Streptophyta): Evidence for the accelerated rate of morphological evolution in protists. Mol. Phylogenet. Evol. 2011;61:933–943. doi: 10.1016/j.ympev.2011.08.018. PubMed DOI