Activation of the integrated stress response confers vulnerability to mitoribosome-targeting antibiotics in melanoma
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
34287642
PubMed Central
PMC8424468
DOI
10.1084/jem.20210571
PII: 212494
Knihovny.cz E-zdroje
- MeSH
- antibiotika antitumorózní farmakologie MeSH
- chemorezistence účinky léků MeSH
- doxycyklin farmakologie MeSH
- fyziologický stres účinky léků MeSH
- inhibitory proteinkinas farmakologie MeSH
- lidé MeSH
- melanom farmakoterapie genetika mortalita patologie MeSH
- mitochondriální ribozomy účinky léků MeSH
- myši inbrední C57BL MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory uvey farmakoterapie patologie MeSH
- senioři MeSH
- tigecyklin farmakologie MeSH
- xenogenní modely - testy antitumorózní aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- senioři MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibiotika antitumorózní MeSH
- doxycyklin MeSH
- inhibitory proteinkinas MeSH
- tigecyklin MeSH
The ability to adapt to environmental stress, including therapeutic insult, contributes to tumor evolution and drug resistance. In suboptimal conditions, the integrated stress response (ISR) promotes survival by dampening cytosolic translation. We show that ISR-dependent survival also relies on a concomitant up-regulation of mitochondrial protein synthesis, a vulnerability that can be exploited using mitoribosome-targeting antibiotics. Accordingly, such agents sensitized to MAPK inhibition, thus preventing the development of resistance in BRAFV600E melanoma models. Additionally, this treatment compromised the growth of melanomas that exhibited elevated ISR activity and resistance to both immunotherapy and targeted therapy. In keeping with this, pharmacological inactivation of ISR, or silencing of ATF4, rescued the antitumoral response to the tetracyclines. Moreover, a melanoma patient exposed to doxycycline experienced complete and long-lasting response of a treatment-resistant lesion. Our study indicates that the repurposing of mitoribosome-targeting antibiotics offers a rational salvage strategy for targeted therapy in BRAF mutant melanoma and a therapeutic option for NRAS-driven and immunotherapy-resistant tumors.
Laboratoire d'Excellence TOUCAN Toulouse France
Taconic Biosciences Leverkusen Germany
Trace Leuven Cancer Institute Katholieke Universiteit Leuven Belgium
Translational Cell and Tissue Research Katholieke Universiteit Leuven Belgium
Zobrazit více v PubMed
Ahler, E., Sullivan W.J., Cass A., Braas D., York A.G., Bensinger S.J., Graeber T.G., and Christofk H.R.. 2013. Doxycycline alters metabolism and proliferation of human cell lines. PLoS One. 8:e64561. 10.1371/journal.pone.0064561 PubMed DOI PMC
Almanza, A., Carlesso A., Chintha C., Creedican S., Doultsinos D., Leuzzi B., Luís A., McCarthy N., Montibeller L., More S., et al. . 2019. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J. 286:241–278. 10.1111/febs.14608 PubMed DOI PMC
Bassi, P.U., Onyeji C.O., and Ukponmwan O.E.. 2004. Effects of tetracycline on the pharmacokinetics of halofantrine in healthy volunteers. Br. J. Clin. Pharmacol. 58:52–55. 10.1111/j.1365-2125.2004.02087.x PubMed DOI PMC
Boshuizen, J., Koopman L.A., Krijgsman O., Shahrabi A., van den Heuvel E.G., Ligtenberg M.A., Vredevoogd D.W., Kemper K., Kuilman T., Song J.Y., et al. . 2018. Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat. Med. 24:203–212. 10.1038/nm.4472 PubMed DOI
Boshuizen, J., Vredevoogd D.W., Krijgsman O., Ligtenberg M.A., Blankenstein S., de Bruijn B., Frederick D.T., Kenski J.C.N., Parren M., Brüggemann M., et al. . 2020. Reversal of pre-existing NGFR-driven tumor and immune therapy resistance. Nat. Commun. 11:3946. 10.1038/s41467-020-17739-8 PubMed DOI PMC
Boumahdi, S., and de Sauvage F.J.. 2020. The great escape: tumour cell plasticity in resistance to targeted therapy. Nat. Rev. Drug Discov. 19:39–56. 10.1038/s41573-019-0044-1 PubMed DOI
Boyce, M., Bryant K.F., Jousse C., Long K., Harding H.P., Scheuner D., Kaufman R.J., Ma D., Coen D.M., Ron D., and Yuan J.. 2005. A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science. 307:935–939. 10.1126/science.1101902 PubMed DOI
Chan, C.P., Kok K.H., Tang H.M.V., Wong C.M., and Jin D.Y.. 2013. Internal ribosome entry site-mediated translational regulation of ATF4 splice variant in mammalian unfolded protein response. Biochim. Biophys. Acta. 1833:2165–2175. 10.1016/j.bbamcr.2013.05.002 PubMed DOI
Chen, E.I.2012. Mitochondrial dysfunction and cancer metastasis. J. Bioenerg. Biomembr. 44:619–622. 10.1007/s10863-012-9465-9 PubMed DOI
Chen, E.I., Hewel J., Krueger J.S., Tiraby C., Weber M.R., Kralli A., Becker K., Yates J.R. III, and Felding-Habermann B.. 2007. Adaptation of energy metabolism in breast cancer brain metastases. Cancer Res. 67:1472–1486. 10.1158/0008-5472.CAN-06-3137 PubMed DOI
Cheng, G., Zhang Q., Pan J., Lee Y., Ouari O., Hardy M., Zielonka M., Myers C.R., Zielonka J., Weh K., et al. . 2019. Targeting lonidamine to mitochondria mitigates lung tumorigenesis and brain metastasis. Nat. Commun. 10:2205. 10.1038/s41467-019-10042-1 PubMed DOI PMC
Childress, E.S., Alexopoulos S.J., Hoehn K.L., and Santos W.L.. 2018. Small Molecule Mitochondrial Uncouplers and Their Therapeutic Potential. J. Med. Chem. 61:4641–4655. 10.1021/acs.jmedchem.7b01182 PubMed DOI
D’Andrea, A., Gritti I., Nicoli P., Giorgio M., Doni M., Conti A., Bianchi V., Casoli L., Sabò A., Mironov A., et al. . 2016. The mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas. Oncotarget. 7:72415–72430. 10.18632/oncotarget.11719 PubMed DOI PMC
Dassi, E., Re A., Leo S., Tebaldi T., Pasini L., Peroni D., and Quattrone A.. 2014. AURA 2: Empowering discovery of post-transcriptional networks. Translation (Austin). 2:e27738. 10.4161/trla.27738 PubMed DOI PMC
Davis, R.T., Blake K., Ma D., Gabra M.B.I., Hernandez G.A., Phung A.T., Yang Y., Maurer D., Lefebvre A.E.Y.T., Alshetaiwi H., et al. . 2020. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat. Cell Biol. 22:310–320. 10.1038/s41556-020-0477-0 PubMed DOI
Deng, P., and Haynes C.M.. 2017. Mitochondrial dysfunction in cancer: Potential roles of ATF5 and the mitochondrial UPR. Semin. Cancer Biol. 47:43–49. 10.1016/j.semcancer.2017.05.002 PubMed DOI PMC
Dobson, S.M., García-Prat L., Vanner R.J., Wintersinger J., Waanders E., Gu Z., McLeod J., Gan O.I., Grandal I., Payne-Turner D., et al. . 2020. Relapse-Fated Latent Diagnosis Subclones in Acute B Lineage Leukemia Are Drug Tolerant and Possess Distinct Metabolic Programs. Cancer Discov. 10:568–587. 10.1158/2159-8290.CD-19-1059 PubMed DOI PMC
Dumas, L., Herviou P., Dassi E., Cammas A., and Millevoi S.. 2021. G-Quadruplexes in RNA Biology: Recent Advances and Future Directions. Trends Biochem. Sci. 46:270–283. 10.1016/j.tibs.2020.11.001 PubMed DOI
Falletta, P., Sanchez-Del-Campo L., Chauhan J., Effern M., Kenyon A., Kershaw C.J., Siddaway R., Lisle R., Freter R., Daniels M.J., et al. . 2017. Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma. Genes Dev. 31:18–33. 10.1101/gad.290940.116 PubMed DOI PMC
Faubert, B., Solmonson A., and DeBerardinis R.J.. 2020. Metabolic reprogramming and cancer progression. Science. 368:eaaw5473. 10.1126/science.aaw5473 PubMed DOI PMC
Fischer, G.M., Jalali A., Kircher D.A., Lee W.C., McQuade J.L., Haydu L.E., Joon A.Y., Reuben A., de Macedo M.P., Carapeto F.C.L., et al. . 2019. Molecular profiling reveals unique immune and metabolic features of melanoma brain metastases. Cancer Discov. 9:628–645. 10.1158/2159-8290.CD-18-1489 PubMed DOI PMC
Guo, J.U., and Bartel D.P.. 2016. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science. 353:aaf5371. 10.1126/science.aaf5371 PubMed DOI PMC
Haq, R., Shoag J., Andreu-Perez P., Yokoyama S., Edelman H., Rowe G.C., Frederick D.T., Hurley A.D., Nellore A., Kung A.L., et al. . 2013. Oncogenic BRAF regulates oxidative metabolism via PGC1α and MITF. Cancer Cell. 23:302–315. 10.1016/j.ccr.2013.02.003 PubMed DOI PMC
Holohan, C., Van Schaeybroeck S., Longley D.B., and Johnston P.G.. 2013. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer. 13:714–726. 10.1038/nrc3599 PubMed DOI
Jagust, P., de Luxán-Delgado B., Parejo-Alonso B., and Sancho P.. 2019. Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells. Front. Pharmacol. 10:203. 10.3389/fphar.2019.00203 PubMed DOI PMC
Jerby-Arnon, L., Shah P., Cuoco M.S., Rodman C., Su M.J., Melms J.C., Leeson R., Kanodia A., Mei S., Lin J.R., et al. . 2018. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell. 175:984–997.e24. 10.1016/j.cell.2018.09.006 PubMed DOI PMC
Jewer, M., Lee L., Leibovitch M., Zhang G., Liu J., Findlay S.D., Vincent K.M., Tandoc K., Dieters-Castator D., Quail D.F., et al. . 2020. Translational control of breast cancer plasticity. Nat. Commun. 11:2498. 10.1038/s41467-020-16352-z PubMed DOI PMC
Kalghatgi, S., Spina C.S., Costello J.C., Liesa M., Morones-Ramirez J.R., Slomovic S., Molina A., Shirihai O.S., and Collins J.J.. 2013. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. Sci. Transl. Med. 5:192ra85. 10.1126/scitranslmed.3006055 PubMed DOI PMC
Kikin, O., D’Antonio L., and Bagga P.S.. 2006. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 34(Web Server):W676–W682. 10.1093/nar/gkl253 PubMed DOI PMC
Kinsey, C.G., Camolotto S.A., Boespflug A.M., Guillen K.P., Foth M., Truong A., Schuman S.S., Shea J.E., Seipp M.T., Yap J.T., et al. . 2019. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25:620–627. 10.1038/s41591-019-0367-9 PubMed DOI PMC
Kwok, C.K., Marsico G., Sahakyan A.B., Chambers V.S., and Balasubramanian S.. 2016. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods. 13:841–844. 10.1038/nmeth.3965 PubMed DOI
Lam, S.S., Martell J.D., Kamer K.J., Deerinck T.J., Ellisman M.H., Mootha V.K., and Ting A.Y.. 2015. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods. 12:51–54. 10.1038/nmeth.3179 PubMed DOI PMC
Landsberg, J., Kohlmeyer J., Renn M., Bald T., Rogava M., Cron M., Fatho M., Lennerz V., Wölfel T., Hölzel M., and Tüting T.. 2012. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature. 490:412–416. 10.1038/nature11538 PubMed DOI
Larkin, J., Lao C.D., Urba W.J., McDermott D.F., Horak C., Jiang J., and Wolchok J.D.. 2015. Efficacy and Safety of Nivolumab in Patients With BRAF V600 Mutant and BRAF Wild-Type Advanced Melanoma: A Pooled Analysis of 4 Clinical Trials. JAMA Oncol. 1:433–440. 10.1001/jamaoncol.2015.1184 PubMed DOI
Lawrence, S.K., Nguyen D., Bowen C., Richards-Peterson L., and Skordos K.W.. 2014. The metabolic drug-drug interaction profile of Dabrafenib: in vitro investigations and quantitative extrapolation of the P450-mediated DDI risk. Drug Metab. Dispos. 42:1180–1190. 10.1124/dmd.114.057778 PubMed DOI
Lee, J.H., Shklovskaya E., Lim S.Y., Carlino M.S., Menzies A.M., Stewart A., Pedersen B., Irvine M., Alavi S., Yang J.Y.H., et al. . 2020. Transcriptional downregulation of MHC class I and melanoma de- differentiation in resistance to PD-1 inhibition. Nat. Commun. 11:1897. 10.1038/s41467-020-15726-7 PubMed DOI PMC
Matson, V., Fessler J., Bao R., Chongsuwat T., Zha Y., Alegre M.-L., Luke J.J., and Gajewski T.F.. 2018. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 10.1126/science.aao3290 PubMed DOI PMC
McConkey, D.J.2017. The integrated stress response and proteotoxicity in cancer therapy. Biochem. Biophys. Res. Commun. 482:450–453. 10.1016/j.bbrc.2016.11.047 PubMed DOI PMC
McQuade, J.L., Daniel C.R., Helmink B.A., and Wargo J.A.. 2019. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 20:e77–e91. 10.1016/S1470-2045(18)30952-5 PubMed DOI
Meeth, K., Wang J.X., Micevic G., Damsky W., and Bosenberg M.W.. 2016. The YUMM lines: a series of congenic mouse melanoma cell lines with defined genetic alterations. Pigment Cell Melanoma Res. 29:590–597. 10.1111/pcmr.12498 PubMed DOI PMC
Mehta, A., Kim Y.J., Robert L., Tsoi J., Comin-Anduix B., Berent-Maoz B., Cochran A.J., Economou J.S., Tumeh P.C., Puig-Saus C., and Ribas A.. 2018. Immunotherapy resistance by inflammation-induced dedifferentiation. Cancer Discov. 8:935–943. 10.1158/2159-8290.CD-17-1178 PubMed DOI PMC
Min, M., and Spencer S.L.. 2019. Spontaneously slow-cycling subpopulations of human cells originate from activation of stress-response pathways. PLoS Biol. 17:e3000178. 10.1371/journal.pbio.3000178 PubMed DOI PMC
Moullan, N., Mouchiroud L., Wang X., Ryu D., Williams E.G., Mottis A., Jovaisaite V., Frochaux M.V., Quiros P.M., Deplancke B., et al. . 2015. Tetracyclines Disturb Mitochondrial Function across Eukaryotic Models: A Call for Caution in Biomedical Research. Cell Rep. 10:1681–1691. 10.1016/j.celrep.2015.02.034 PubMed DOI PMC
Nau, R., Sörgel F., and Eiffert H.. 2010. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin. Microbiol. Rev. 23:858–883. 10.1128/CMR.00007-10 PubMed DOI PMC
Ojha, R., Leli N.M., Onorati A., Piao S., Verginadis I.I., Tameire F., Rebecca V.W., Chude C.I., Murugan S., Fennelly C., et al. . 2019. Er translocation of the mapk pathway drives therapy resistance in BRAF-mutant melanoma. Cancer Discov. 9:396–415. 10.1158/2159-8290.CD-18-0348 PubMed DOI PMC
Patton, E.E., Mueller K.L., Adams D.J., Anandasabapathy N., Aplin A.E., Bertolotto C., Bosenberg M., Ceol C.J., Burd C.E., Chi P., et al. . 2021. Melanoma models for the next generation of therapies. Cancer Cell. 39:610–631. 10.1016/j.ccell.2021.01.011 PubMed DOI PMC
Poźniak, J., Nsengimana J., Laye J.P., O’Shea S.J., Diaz J.M.S., Droop A.P., Filia A., Harland M., Davies J.R., Mell T., et al. . 2019. Genetic and environmental determinants of immune response to cutaneous melanoma. Cancer Res. 79:2684–2696. 10.1158/0008-5472.CAN-18-2864 PubMed DOI PMC
Pushpakom, S., Iorio F., Eyers P.A., Escott K.J., Hopper S., Wells A., Doig A., Guilliams T., Latimer J., McNamee C., et al. . 2019. Drug repurposing: progress, challenges and recommendations. Nat. Rev. Drug Discov. 18:41–58. 10.1038/nrd.2018.168 PubMed DOI
Quirós, P.M., Prado M.A., Zamboni N., D’Amico D., Williams R.W., Finley D., Gygi S.P., and Auwerx J.. 2017. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J. Cell Biol. 216:2027–2045. 10.1083/jcb.201702058 PubMed DOI PMC
Rambow, F., Rogiers A., Marin-Bejar O., Aibar S., Femel J., Dewaele M., Karras P., Brown D., Chang Y.H., Debiec-Rychter M., et al. . 2018. Toward Minimal Residual Disease-Directed Therapy in Melanoma. Cell. 174:843–855.e19. 10.1016/j.cell.2018.06.025 PubMed DOI
Rambow, F., Marine J.C., and Goding C.R.. 2019. Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities. Genes Dev. 33:1295–1318. 10.1101/gad.329771.119 PubMed DOI PMC
Ravà, M., D’Andrea A., Nicoli P., Gritti I., Donati G., Doni M., Giorgio M., Olivero D., and Amati B.. 2018. Therapeutic synergy between tigecycline and venetoclax in a preclinical model of MYC/BCL2 double-hit B cell lymphoma. Sci. Transl. Med. 10:eaan8723. 10.1126/scitranslmed.aan8723 PubMed DOI
Ravindran Menon, D., Das S., Krepler C., Vultur A., Rinner B., Schauer S., Kashofer K., Wagner K., Zhang G., Bonyadi Rad E., et al. . 2015. A stress-induced early innate response causes multidrug tolerance in melanoma. Oncogene. 34:4448–4459. 10.1038/onc.2014.372 PubMed DOI PMC
Reed, G.A., Schiller G.J., Kambhampati S., Tallman M.S., Douer D., Minden M.D., Yee K.W., Gupta V., Brandwein J., Jitkova Y., et al. . 2016. A Phase 1 study of intravenous infusions of tigecycline in patients with acute myeloid leukemia. Cancer Med. 5:3031–3040. 10.1002/cam4.845 PubMed DOI PMC
Richter-Dennerlein, R., Oeljeklaus S., Lorenzi I., Ronsör C., Bareth B., Schendzielorz A.B., Wang C., Warscheid B., Rehling P., and Dennerlein S.. 2016. Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein. Cell. 167:471–483.e10. 10.1016/j.cell.2016.09.003 PubMed DOI PMC
Roesch, A., Vultur A., Bogeski I., Wang H., Zimmermann K.M., Speicher D., Körbel C., Laschke M.W., Gimotty P.A., Philipp S.E., et al. . 2013. Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial respiratory chain of slow-cycling JARID1B(high) cells. Cancer Cell. 23:811–825. 10.1016/j.ccr.2013.05.003 PubMed DOI PMC
Rzymski, T., Milani M., Singleton D.C., and Harris A.L.. 2009. Role of ATF4 in regulation of autophagy and resistance to drugs and hypoxia. Cell Cycle. 8:3838–3847. 10.4161/cc.8.23.10086 PubMed DOI
Schmidt, E.K., Clavarino G., Ceppi M., and Pierre P.. 2009. SUnSET, a nonradioactive method to monitor protein synthesis. Nat. Methods. 6:275–277. 10.1038/nmeth.1314 PubMed DOI
Sharma, S.V., Lee D.Y., Li B., Quinlan M.P., Takahashi F., Maheswaran S., McDermott U., Azizian N., Zou L., Fischbach M.A., et al. . 2010. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell. 141:69–80. 10.1016/j.cell.2010.02.027 PubMed DOI PMC
Sharon, D., Cathelin S., Mirali S., Di Trani J.M., Yanofsky D.J., Keon K.A., Rubinstein J.L., Schimmer A.D., Ketela T., and Chan S.M.. 2019. Inhibition of mitochondrial translation overcomes venetoclax resistance in AML through activation of the integrated stress response. Sci. Transl. Med. 11:eaax2863. 10.1126/scitranslmed.aax2863 PubMed DOI
Shen, S., Faouzi S., Bastide A., Martineau S., Malka-Mahieu H., Fu Y., Sun X., Mateus C., Routier E., Roy S., et al. . 2019. An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nat. Commun. 10:5713. 10.1038/s41467-019-13360-6 PubMed DOI PMC
Škrtić, M., Sriskanthadevan S., Jhas B., Gebbia M., Wang X., Wang Z., Hurren R., Jitkova Y., Gronda M., Maclean N., et al. . 2011. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell. 20:674–688. 10.1016/j.ccr.2011.10.015 PubMed DOI PMC
Sosman, J.A., Kim K.B., Schuchter L., Gonzalez R., Pavlick A.C., Weber J.S., McArthur G.A., Hutson T.E., Moschos S.J., Flaherty K.T., et al. . 2012. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366:707–714. 10.1056/NEJMoa1112302 PubMed DOI PMC
Su, Y., Wei W., Robert L., Xue M., Tsoi J., Garcia-Diaz A., Homet Moreno B., Kim J., Ng R.H., Lee J.W., et al. . 2017. Single-cell analysis resolves the cell state transition and signaling dynamics associated with melanoma drug-induced resistance. Proc. Natl. Acad. Sci. USA. 114:13679–13684. 10.1073/pnas.1712064115 PubMed DOI PMC
Sundstrøm, T., Prestegarden L., Azuaje F., Aasen S.N., Røsland G.V., Varughese J.K., Bahador M., Bernatz S., Braun Y., Harter P.N., et al. . 2019. Inhibition of mitochondrial respiration prevents BRAF-mutant melanoma brain metastasis. Acta Neuropathol. Commun. 7:55. 10.1186/s40478-019-0712-8 PubMed DOI PMC
Tan, K.R., Magill A.J., Parise M.E., and Arguin P.M.. Centers for Disease Control and Prevention . 2011. Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis. Am. J. Trop. Med. Hyg. 84:517–531. 10.4269/ajtmh.2011.10-0285 PubMed DOI PMC
Tsoi, J., Robert L., Paraiso K., Galvan C., Sheu K.M., Lay J., Wong D.J.L., Atefi M., Shirazi R., Wang X., et al. . 2018. Multi-stage Differentiation Defines Melanoma Subtypes with Differential Vulnerability to Drug-Induced Iron-Dependent Oxidative Stress. Cancer Cell. 33:890–904.e5. 10.1016/j.ccell.2018.03.017 PubMed DOI PMC
Verheyden, Y., Goedert L., and Leucci E.. 2019. Control of nucleolar stress and translational reprogramming by lncRNAs. Cell Stress. 3:19–26. 10.15698/cst2019.01.172 PubMed DOI PMC
Wang, J., Perry C.J., Meeth K., Thakral D., Damsky W., Micevic G., Kaech S., Blenman K., and Bosenberg M.. 2017. UV-induced somatic mutations elicit a functional T cell response in the YUMMER1.7 mouse melanoma model. Pigment Cell Melanoma Res. 30:428–435. 10.1111/pcmr.12591 PubMed DOI PMC
Waring, M.J., Arrowsmith J., Leach A.R., Leeson P.D., Mandrell S., Owen R.M., Pairaudeau G., Pennie W.D., Pickett S.D., Wang J., et al. . 2015. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 14:475–486. 10.1038/nrd4609 PubMed DOI
Weinberg, S.E., and Chandel N.S.. 2015. Targeting mitochondria metabolism for cancer therapy. Nat. Chem. Biol. 11:9–15. 10.1038/nchembio.1712 PubMed DOI PMC
Yagi, M., Toshima T., Amamoto R., Do Y., Hirai H., Setoyama D., Kang D., and Uchiumi T.. 2021. Mitochondrial translation deficiency impairs NAD+ -mediated lysosomal acidification. EMBO J. 40:e105268. 10.15252/embj.2020105268 PubMed DOI PMC
Zhang, L., Xu L., Zhang F., and Vlashi E.. 2017. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle. 16:737–745. 10.1080/15384101.2016.1241929 PubMed DOI PMC
Mitoribosomal synthetic lethality overcomes multidrug resistance in MYC-driven neuroblastoma