Linear Peptides-A Combinatorial Innovation in the Venom of Some Modern Spiders
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34295924
PubMed Central
PMC8290080
DOI
10.3389/fmolb.2021.705141
PII: 705141
Knihovny.cz E-zdroje
- Klíčová slova
- NGS spider venom transcriptome analysis, complex precursors, cytolytical peptides, linear peptides, lycosins, oxyopinins, tachykinin-like peptides, venom protease,
- Publikační typ
- časopisecké články MeSH
In the venom of spiders, linear peptides (LPs), also called cytolytical or antimicrobial peptides, represent a largely neglected group of mostly membrane active substances that contribute in some spider species considerably to the killing power of spider venom. By next-generation sequencing venom gland transcriptome analysis, we investigated 48 spider species from 23 spider families and detected LPs in 20 species, belonging to five spider families (Ctenidae, Lycosidae, Oxyopidae, Pisauridae, and Zodariidae). The structural diversity is extraordinary high in some species: the lynx spider Oxyopes heterophthalmus contains 62 and the lycosid Pardosa palustris 60 different LPs. In total, we identified 524 linear peptide structures and some of them are in lycosids identical on amino acid level. LPs are mainly encoded in complex precursor structures in which, after the signal peptide and propeptide, 13 or more LPs (Hogna radiata) are connected by linkers. Besides Cupiennius species, also in Oxyopidae, posttranslational modifications of some precursor structures result in the formation of two-chain peptides. It is obvious that complex precursor structures represent a very suitable and fast method to produce a high number and a high diversity of bioactive LPs as economically as possible. At least in Lycosidae, Oxyopidae, and in the genus Cupiennius, LPs reach very high Transcripts Per Kilobase Million values, indicating functional importance within the envenomation process.
Departamento de Ecología y Evolución Facultad de Ciencias UdelaR Montevideo Uruguay
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Dipartimento di Scienze della Vita e Biologia dei Sistemi University of Torino Torino Italy
Institute of Ecology and Evolution University of Bern Bern Switzerland
Interfaculty Bioinformatics Unit University of Bern Bern Switzerland
Zobrazit více v PubMed
Almagro Armenteros J. J., Tsirigos K. D., Sønderby C. K., Petersen T. N., Winther O., Brunak S., et al. (2019). SignalP 5.0 Improves Signal Peptide Predictions Using Deep Neural Networks. Nat. Biotechnol. 37, 420–423. 10.1038/s41587-019-0036-z PubMed DOI
Bayega A., Wang Y. C., Oikonomopoulos S., Djambazian H., Fahiminiya S., Ragoussis J. (2018). Transcript Profiling Using Long-Read Sequencing Technologies. Methods Mol. Biol. 1783, 121–147. 10.1007/978-1-4939-7834-2_6 PubMed DOI
Bray N. L., Pimentel H., Melsted P., Pachter L. (2016). Near-optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 34, 525–527. 10.1038/nbt.3519 PubMed DOI
Budnik B. A., Olsen J. V., Egorov T. A., Anisimova V. E., Galkina T. G., Musolyamov A. K., et al. (2004). De Novo sequencing of Antimicrobial Peptides Isolated from the Venom Glands of the Wolf Spider Lycosa singoriensis . J. Mass. Spectrom. 39, 193–201. 10.1002/jms.577 PubMed DOI
Cheng D.-Q., Piel W. H. (2018). The Origins of the Psechridae: Web-Building Lycosoid Spiders. Mol. Phylogenet. Evol. 125, 213–219. 10.1016/j.ympev.2018.03.035 PubMed DOI
Corzo G., Villegas E., Gómez-Lagunas F., Possani L. D., Belokoneva O. S., Nakajima T. (2002). Oxyopinins, Large Amphipathic Peptides Isolated from the Venom of the Wolf Spider Oxyopes kitabensis with Cytolytic Properties and Positive Insecticidal Cooperativity with Spider Neurotoxins. J. Biol. Chem. 277, 23627–23637. 10.1074/jbc.M200511200 PubMed DOI
Crooks G. E., Hon G., Chandonia J. M., Brenner S. E. (2004). WebLogo: a Sequence Logo Generator. Genome Res. 14, 1188–1190. 10.1101/gr.849004 PubMed DOI PMC
Diniz M. R. V., Paiva A. L. B., Guerra-Duarte C., Nishiyama M. Y., Jr., Mudadu M. A., Oliveira U. d., et al. (2018). An Overview of Phoneutria nigriventer Spider Venom Using Combined Transcriptomic and Proteomic Approaches. PLoS One 13, e0200628. 10.1371/journal.pone.0200628 PubMed DOI PMC
Dubovskii P. V., Vassilevski A. A., Kozlov S. A., Feofanov A. V., Grishin E. V., Efremov R. G. (2015). Latarcins: Versatile Spider Venom Peptides. Cell. Mol. Life Sci. 72, 4501–4522. 10.1007/s00018-015-2016-x PubMed DOI PMC
Dubovskii P. V., Vassilevski A. A., Samsonova O. V., Egorova N. S., Kozlov S. A., Feofanov A. V., et al. (2011). Novel Lynx Spider Toxin Shares Common Molecular Architecture with Defense Peptides from Frog Skin. FEBS J. 278, 4382–4393. 10.1111/j.1742-4658.2011.08361.x PubMed DOI
Fernández R., Kallal R. J., Dimitrov D., Ballesteros J. A., Arnedo M. A., Giribet G., et al. (2018). Phylogenomics, Diversification Dynamics, and Comparative Transcriptomics across the Spider Tree of Life. Curr. Biol. 28, 1489–1497. 10.1016/j.cub.2018.03.064 PubMed DOI
Garnier J., Gibrat J.-F., Robson B. (1996). [32] GOR Method for Predicting Protein Secondary Structure from Amino Acid Sequence. Methods Enzymol. 266, 540–553. 10.1016/s0076-6879(96)66034-0 PubMed DOI
Ghezellou P., Garikapati V., Kazemi S. M., Strupat K., Ghassempour A., Spengler B. (2018). A Perspective View of Top‐down Proteomics in Snake Venom Research. Rapid Commun. Mass. Spectrom. 33, 20–27. 10.1002/rcm.8255 PubMed DOI
Giordano F., Aigrain L., Quail M. A., Coupland P., Bonfield J. K., Davies R. M., et al. (2017). De Novo Yeast Genome Assemblies From MinION, PacBio and MiSeq Platforms. Sci. Rep. 7, 3935. 10.1038/s41598-017-03996-z PubMed DOI PMC
Grabherr M. G., Haas B. J., Yassour M., Levin J. Z., Thompson D. A., Amit I., et al. (2011). Full-length Transcriptome Assembly From RNA-Seq Data without a Reference Genome. Nat. Biotechnol. 29, 644–652. 10.1038/nbt.1883 PubMed DOI PMC
Jones D. T., Taylor W. R., Thornton J. M. (1992). The Rapid Generation of Mutation Data Matrices from Protein Sequences. Bioinformatics 8, 275–282. 10.1093/bioinformatics/8.3.275 PubMed DOI
Kozlov S. A., Grishin E. V. (2007). The Universal Algorithm of Maturation for Secretory and Excretory Protein Precursors. Toxicon 49, 721–726. 10.1016/j.toxicon.2006.11.007 PubMed DOI
Kozlov S. A., Vassilevski A. A., Feofanov A. V., Surovoy A. Y., Karpunin D. V., Grishin E. V. (2006). Latarcins, Antimicrobial and Cytolytic Peptides from the Venom of the Spider Lachesana tarabaevi (Zodariidae) that Exemplify Biomolecular Diversity. J. Biol. Chem. 281, 20983–20992. 10.1074/jbc.M602168200 PubMed DOI
Kuhn-Nentwig L. (2021). Complex Precursor Structures of Cytolytic Cupiennins Identified in Spider Venom Gland Transcriptomes. Sci. Rep. 11, 4009. 10.1038/s41598-021-83624-z PubMed DOI PMC
Kuhn-Nentwig L., Langenegger N., Heller M., Koua D., Nentwig W. (2019). The Dual Prey-Inactivation Strategy of Spiders-In-Depth Venomic Analysis of Cupiennius salei . Toxins 11, 167. 10.3390/toxins11030167 PubMed DOI PMC
Kuhn-Nentwig L., Müller J., Schaller J., Walz A., Dathe M., Nentwig W. (2002). Cupiennin 1, a New Family of Highly Basic Antimicrobial Peptides in the Venom of the Spider Cupiennius salei (Ctenidae). J. Biol. Chem. 277, 11208–11216. 10.1074/jbc.M111099200 PubMed DOI
Kuhn-Nentwig L., Stöcklin R., Nentwig W. (2011a). Venom Composition and Strategies in Spiders. Adv. Insect Physiol. 40, 1–86. 10.1016/B978-0-12-387668-3.00001-5 DOI
Kuhn-Nentwig L., Willems J., Seebeck T., Shalaby T., Kaiser M., Nentwig W. (2011b). Cupiennin 1a Exhibits a Remarkably Broad, Non-stereospecific Cytolytic Activity on Bacteria, Protozoan Parasites, Insects, and Human Cancer Cells. Amino Acids 40, 69–76. 10.1007/s00726-009-0471-0 PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35, 1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Kuzmenkov A. I., Sachkova M. Y., Kovalchuk S. I., Grishin E. V., Vassilevski A. A. (2016). Lachesana tarabaevi, an Expert in Membrane-Active Toxins. Biochem. J. 473, 2495–2506. 10.1042/bcj20160436 PubMed DOI
Langenegger N., Koua D., Schürch S., Heller M., Nentwig W., Kuhn-Nentwig L. (2018). Identification of a Precursor Processing Protease from the Spider Cupiennius salei Essential for Venom Neurotoxin Maturation. J. Biol. Chem. 293, 2079–2090. 10.1074/jbc.M117.810911 PubMed DOI PMC
Langenegger N., Nentwig W., Kuhn-Nentwig L. (2019). Spider Venom: Components, Modes of Action, and Novel Strategies in Transcriptomic and Proteomic Analyses. Toxins 11, 611. 10.3390/toxins11100611 PubMed DOI PMC
Madeira F., Park Y. M., Lee J., Buso N., Gur T., Madhusoodanan N., et al. (2019). The EMBL-EBI Search and Sequence Analysis Tools APIs in 2019. Nucleic Acids Res. 47, W636–W641. 10.1093/nar/gkz268 PubMed DOI PMC
Melani R. D., Nogueira F. C. S., Domont G. B. (2017). It Is Time for Top-Down Venomics. J. Venom Anim. Toxins Incl Trop. Dis. 23, 44. 10.1186/s40409-017-0135-6 PubMed DOI PMC
Melo-Braga M. N., De Marco Almeida F., Dos Santos D. M., de Avelar Júnior J. T., Dos Reis P. V. M., De Lima M. E. (2020). Antimicrobial Peptides from Lycosidae (Sundevall, 1833) Spiders. Cpps 21, 527–541. 10.2174/1389203721666200116091911 PubMed DOI
Paiva A. L. B., Mudadu M. A., Pereira E. H. T., Marri C. A., Guerra-Duarte C., Diniz M. R. V. (2019). Transcriptome Analysis of the Spider Phoneutria pertyi Venom Glands Reveals Novel Venom Components for the Genus Phoneutria . Toxicon 163, 59–69. 10.1016/j.toxicon.2019.03.014 PubMed DOI
Pekár S., Brabec M. (2016). Modern Analysis of Biological Data: generalised Linear Models in R. (Brno, Czech: Masaryk University Press; ).
Pekár S., Petráková L., Šedo O., Korenko S., Zdráhal Z. (2018). Trophic Niche, Capture Efficiency and Venom Profiles of Six Sympatric Ant-Eating Spider Species (Araneae: Zodariidae). Mol. Ecol. 27, 1053–1064. 10.1111/mec.14485 PubMed DOI
Pekár S., Šedo O., Líznarová E., Korenko S., Zdráhal Z. (2014). David and Goliath: Potent Venom of an Ant-Eating Spider (Araneae) Enables Capture of a Giant Prey. Naturwissenschaften 101, 533–540. 10.1007/s00114-014-1189-8 PubMed DOI
Piacentini L. N., Ramírez M. J. (2019). Hunting the Wolf: A Molecular Phylogeny of the Wolf Spiders (Araneae, Lycosidae). Mol. Phylogenet. Evol. 136, 227–240. 10.1016/j.ympev.2019.04.004 PubMed DOI
Pimenta A. M. C., Rates B., Bloch C., Jr., Gomes P. C., Santoro M. M., De Lima M. E., et al. (2005). Electrospray Ionization Quadrupole Time-Of-Flight and Matrix-Assisted Laser Desorption/ionization Tandem Time-Of-Flight Mass Spectrometric Analyses to Solve Micro-heterogeneity in Post-translationally Modified Peptides from Phoneutria nigriventer (Aranea, Ctenidae) Venom. Rapid Commun. Mass. Spectrom. 19, 31–37. 10.1002/rcm.1751 PubMed DOI
Pineda S. S., Chin Y. K.-Y., Undheim E. A. B., Senff S., Mobli M., Dauly C., et al. (2020). Structural Venomics Reveals Evolution of a Complex Venom by Duplication and Diversification of an Ancient Peptide-Encoding Gene. Proc. Natl. Acad. Sci. USA 117, 11399–11408. 10.1073/pnas.1914536117 PubMed DOI PMC
R_Core_Team (2021). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Rádis-Baptista G. (2021). Cell-penetrating Peptides Derived from Animal Venoms and Toxins. Toxins 13, 147. 10.3390/toxins13020147 PubMed DOI PMC
Reis P. V. M., Boff D., Verly R. M., Melo-Braga M. N., Cortés M. E., Santos D. M., et al. (2018). LyeTxI-b, a Synthetic Peptide Derived from Lycosa erythrognatha Spider Venom, Shows Potent Antibiotic Activity In Vitro and In Vivo . Front. Microbiol. 9, 667. 10.3389/fmicb.2018.00667 PubMed DOI PMC
Robinson S. D., Undheim E. A. B., Ueberheide B., King G. F. (2017). Venom Peptides as Therapeutics: Advances, Challenges and the Future of Venom-Peptide Discovery. Expert Rev. Proteomics 14, 931–939. 10.1080/14789450.2017.1377613 PubMed DOI
Sachkova M. Y., Slavokhotova A. A., Grishin E. V., Vassilevski A. A. (2014). Genes and Evolution of Two-Domain Toxins from Lynx Spider Venom. FEBS Lett. 588, 740–745. 10.1016/j.febslet.2014.01.018 PubMed DOI
Saez N. J., Herzig V. (2019). Versatile Spider Venom Peptides and Their Medical and Agricultural Applications. Toxicon 158, 109–126. 10.1016/j.toxicon.2018.11.298 PubMed DOI
Sanggaard K. W., Bechsgaard J. S., Fang X., Duan J., Dyrlund T. F., Gupta V., et al. (2014). Spider Genomes Provide Insight into Composition and Evolution of Venom and Silk. Nat. Commun. 5, 3765. 10.1038/ncomms4765 PubMed DOI PMC
Selden P. A., Penney D. (2010). Fossil Spiders. Biol. Rev. Camb Philos. Soc. 85, 171–206. 10.1111/j.1469-185X.2009.00099.x PubMed DOI
Sollod B. L., Wilson D., Zhaxybayeva O., Gogarten J. P., Drinkwater R., King G. F. (2005). Were Arachnids the First to Use Combinatorial Peptide Libraries? Peptides 26, 131–139. 10.1016/j.peptides.2004.07.016 PubMed DOI
Undheim E. A. B., Grimm L. L., Low C.-F., Morgenstern D., Herzig V., Zobel-Thropp P., et al. (2015). Weaponization of a Hormone: Convergent Recruitment of Hyperglycemic Hormone into the Venom of Arthropod Predators. Structure 23, 1283–1292. 10.1016/j.str.2015.05.003 PubMed DOI
Vassilevski A. A., Kozlov S. A., Samsonova O. V., Egorova N. S., Karpunin D. V., Pluzhnikov K. A., et al. (2008). Cyto-insectotoxins, a Novel Class of Cytolytic and Insecticidal Peptides from Spider Venom. Biochem. J. 411, 687–696. 10.1042/bj20071123 PubMed DOI
Vassilevski A. A., Sachkova M. Y., Ignatova A. A., Kozlov S. A., Feofanov A. V., Grishin E. V. (2013). Spider Toxins Comprising Disulfide-Rich and Linear Amphipathic Domains: a New Class of Molecules Identified in the Lynx Spider Oxyopes takobius . FEBS J. 280, 6247–6261. 10.1111/febs.12547 PubMed DOI
Wagner G. P., Kin K., Lynch V. J. (2012). Measurement of mRNA Abundance Using RNA-Seq Data: RPKM Measure Is Inconsistent Among Samples. Theor. Biosci. 131, 281–285. 10.1007/s12064-012-0162-3 PubMed DOI
Waterhouse A. M., Procter J. B., Martin D. M. A., Clamp M., Barton G. J. (2009). Jalview Version 2--a Multiple Sequence Alignment Editor and Analysis Workbench. Bioinformatics 25, 1189–1191. 10.1093/bioinformatics/btp033 PubMed DOI PMC
Wheeler W. C., Coddington J. A., Crowley L. M., Dimitrov D., Goloboff P. A., Griswold C. E., et al. (2017). The Spider Tree of Life: Phylogeny of Araneae Based on Target‐gene Analyses from an Extensive Taxon Sampling. Cladistics 33, 574–616. 10.1111/cla.12182 PubMed DOI
WSC (2021). World Spider Catalog. Version 22.0. Natural History Museum Bern. Available at: http://wsc.nmbe.ch. (Accessed on 12.04.2021).
Wullschleger B., Nentwig W., Kuhn-Nentwig L. (2005). Spider Venom: Enhancement of Venom Efficacy Mediated by Different Synergistic Strategies in Cupiennius salei . J. Exp. Biol. 208, 2115–2121. 10.1242/jeb.01594 PubMed DOI
Yan L., Adams M. E. (1998). Lycotoxins, Antimicrobial Peptides from Venom of the Wolf Spider Lycosa carolinensis . J. Biol. Chem. 273, 2059–2066. 10.1074/jbc.273.4.2059 PubMed DOI