Synthesis and In Vitro Evaluation of C-7 and C-8 Luteolin Derivatives as Influenza Endonuclease Inhibitors

. 2021 Jul 20 ; 22 (14) : . [epub] 20210720

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34299354

Grantová podpora
LM2015064 the Ministry of Education of the Czech Republic and European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000729 Ministry of Education of the Czech Republic and European Regional Development Fund

The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme's catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural analysis, we identified the presence of a 3',4'-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Experimental IC50 values were determined by AlphaScreen technology. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallography, we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, respectively.

Zobrazit více v PubMed

Iuliano A.D., Roguski K.M., Chang H.H. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet. 2018;391:1285–1300. doi: 10.1016/S0140-6736(17)33293-2. PubMed DOI PMC

Fodor E. The RNA polymerase of influenza A virus: Mechanisms of viral transcription and replication. Acta Virol. 2013;57:113–122. doi: 10.4149/av_2013_02_113. PubMed DOI

Eisfeld A.J., Neumann G., Kawaoka Y. At the centre: Influenza A virus ribonucleoproteins. Nat. Rev. Microbiol. 2015;13:28–41. doi: 10.1038/nrmicro3367. PubMed DOI PMC

Ortin J., Martin-Benito J. The RNA synthesis machinery of negative-stranded RNA viruses. Virology. 2015;479:532–544. doi: 10.1016/j.virol.2015.03.018. PubMed DOI

Dias A., Bouvier D., Crepin T., McCarthy A.A., Hart D.J., Baudin F., Cusack S., Ruigrok R.W.H. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature. 2009;458:914–918. doi: 10.1038/nature07745. PubMed DOI

Walker A.P., Fodor E. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery. Trends Microbiol. 2019;27:398–407. doi: 10.1016/j.tim.2018.12.013. PubMed DOI PMC

De Vlugt C., Sikora D., Pelchat M. Insight into influenza: A virus cap-snatching. Viruses. 2018;10:641. doi: 10.3390/v10110641. PubMed DOI PMC

Guilligay D., Tarendeau F., Resa-Infante P., Coloma R., Crepin T., Sehr P., Lewis J., Ruigrok R.W.H., Ortin J., Hart D.J., et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat. Struct. Mol. Biol. 2008;15:500–506. doi: 10.1038/nsmb.1421. PubMed DOI

Credille C.V., Dick B.L., Morrison C.N., Stokes R.W., Adamek R.N., Wu N.C., Wilson I.A., Cohen S.M. Structure-activity relationships in metal-binding pharmacophores for influenza endonuclease. J. Med. Chem. 2018;61:10206–10217. doi: 10.1021/acs.jmedchem.8b01363. PubMed DOI PMC

Bouloy M., Plotch S.J., Krug R.M. Globin messenger-RNAs are primers for transcription of influenza viral-RNA In Vitro. Proc. Natl. Acad. Sci. USA. 1978;75:4886–4890. doi: 10.1073/pnas.75.10.4886. PubMed DOI PMC

Hayden F.G., Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis. 2019;32:176–186. doi: 10.1097/QCO.0000000000000532. PubMed DOI PMC

Stevaert A., Naesens L. The influenza virus polymerase complex: An update on its structure, functions, and significance for antiviral drug design. Med. Res. Rev. 2016;36:1127–1173. doi: 10.1002/med.21401. PubMed DOI PMC

Clark M.P., Ledeboer M.W., Davies I., Byrn R.A., Jones S.M., Perola E., Tsai A., Jacobs M., Nti-Addae K., Bandarage U.K., et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J. Med. Chem. 2014;57:6668–6678. doi: 10.1021/jm5007275. PubMed DOI

Byrn R.A., Jones S.M., Bennett H.B., Bral C., Clark M.P., Jacobs M.D., Kwong A.D., Ledeboer M.W., Leeman J.R., McNeil C.F., et al. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob. Agents Chemother. 2015;59:1574–1587. doi: 10.1128/AAC.04623-14. PubMed DOI PMC

Sugiyama K., Obayashi E., Kawaguchi A., Suzuki Y., Tame J.R.H., Nagata K., Park S.Y. Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase. EMBO J. 2009;28:1803–1811. doi: 10.1038/emboj.2009.138. PubMed DOI PMC

He X.J., Zhou J., Bartlam M., Zhang R.G., Ma J.Y., Lou Z.Y., Li X.M., Li J.J., Joachimiak A., Zeng Z.H., et al. Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature. 2008;454:1123–1126. doi: 10.1038/nature07120. PubMed DOI

Hejdanek J., Radilova K., Pachl P., Hodek J., Machara A., Weber J., Rezacova P., Konvalinka J., Kozisek M. Structural characterization of the interaction between the C-terminal domain of the influenza polymerase PA subunit and an optimized small peptide inhibitor. Antivir. Res. 2021;185:104971. doi: 10.1016/j.antiviral.2020.104971. PubMed DOI

Ju H., Zhang J., Huang B.S., Kang D.W., Huang B., Liu X.Y., Zhan P. Inhibitors of influenza virus polymerase acidic (PA) endonuclease: Contemporary developments and perspectives. J. Med. Chem. 2017;60:3533–3551. doi: 10.1021/acs.jmedchem.6b01227. PubMed DOI

Kowalinski E., Zubieta C., Wolkerstorfer A., Szolar O.H.J., Ruigrok R.W.H., Cusack S. Structural analysis of specific metal chelating inhibitor binding to the endonuclease domain of influenza pH1N1 (2009) polymerase. PLoS Pathog. 2012;8:e1002831. doi: 10.1371/journal.ppat.1002831. PubMed DOI PMC

Chen A.Y., Adamek R.N., Dick B.L., Credille C.V., Morrison C.N., Cohen S.M. Targeting metalloenzymes for therapeutic intervention. Chem. Rev. 2019;119:1323–1455. doi: 10.1021/acs.chemrev.8b00201. PubMed DOI PMC

Rouffet M., Cohen S.M. Emerging trends in metalloprotein inhibition. Dalton Trans. 2011;40:3445–3454. doi: 10.1039/c0dt01743d. PubMed DOI PMC

Riccardi L., Genna V., De Vivo M. Metal-ligand interactions in drug design. Nat. Rev. Chem. 2018;2:100–112. doi: 10.1038/s41570-018-0018-6. DOI

Yang Y., Hu X.Q., Li Q.S., Zhang X.X., Ruan B.F., Xu J., Liao C.Z. Metalloprotein inhibitors for the treatment of human diseases. Curr. Top. Med. Chem. 2016;16:384–396. doi: 10.2174/1568026615666150813145218. PubMed DOI

Kikuchi T., Watanabe A. Baloxavir heralds a new era in influenza virus biology. Respir. Investig. 2019;57:1–2. doi: 10.1016/j.resinv.2018.10.002. PubMed DOI

Noshi T., Kitano M., Taniguchi K., Yamamoto A., Omoto S., Baba K., Hashimoto T., Ishida K., Kushima Y., Hattori K., et al. In Vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antivir. Res. 2018;160:109–117. doi: 10.1016/j.antiviral.2018.10.008. PubMed DOI

Omoto S., Speranzini V., Hashimoto T., Noshi T., Yamaguchi H., Kawai M., Kawaguchi K., Uehara T., Shishido T., Naito A., et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-27890-4. PubMed DOI PMC

Hastings J.C., Selnick H., Wolanski B., Tomassini J.E. Anti-influenza virus activities of 4-substituted 2,4-dioxobutanoic acid inhibitors. Antimicrob. Agents Chemother. 1996;40:1304–1307. doi: 10.1128/AAC.40.5.1304. PubMed DOI PMC

Liao Y.X., Ye Y.L., Li S.M., Zhuang Y.L., Chen L.Y., Chen J.X., Cui Z.N., Huo L.J., Liu S.W., Song G.P. Synthesis and SARs of dopamine derivatives as potential inhibitors of influenza virus PA(N) endonuclease. Eur. J. Med. Chem. 2020;189:112048. doi: 10.1016/j.ejmech.2020.112048. PubMed DOI

Sagong H.Y., Bauman J.D., Patel D., Das K., Arnold E., LaVoie E.J. Phenyl substituted 4-Hydroxypyridazin-3(2H)-ones and 5-Hydroxypyrimidin-4(3H)-ones: Inhibitors of influenza A endonuclease. J. Med. Chem. 2014;57:8086–8098. doi: 10.1021/jm500958x. PubMed DOI PMC

Parhi A.K., Xiang A., Bauman J.D., Patel D., Vijayan R.S.K., Das K., Arnold E., LaVoie E.J. Phenyl substituted 3-hydroxypyridin-2(1H)-ones: Inhibitors of influenza A endonuclease. Bioorg. Med. Chem. 2013;21:6435–6446. doi: 10.1016/j.bmc.2013.08.053. PubMed DOI

Credille C.V., Chen Y., Cohen S.M. Fragment-based identification of influenza endonuclease inhibitors. J. Med. Chem. 2016;59:6444–6454. doi: 10.1021/acs.jmedchem.6b00628. PubMed DOI PMC

Tomassini J.E., Davies M.E., Hastings J.C., Lingham R., Mojena M., Raghoobar S.L., Singh S.B., Tkacz J.S., Goetz M.A. A novel antiviral agent which inhibits the endonuclease of influenza viruses. Antimicrob. Agents Chemother. 1996;40:1189–1193. doi: 10.1128/AAC.40.5.1189. PubMed DOI PMC

Kuzuhara T., Iwai Y., Takahashi H., Hatakeyama D., Echigo N. Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr. 2009;1:RRN1052. doi: 10.1371/currents.RRN1052. PubMed DOI PMC

Song J.M., Lee K.H., Seong B.L. Antiviral effect of catechins in green tea on influenza virus. Antivir. Res. 2005;68:66–74. doi: 10.1016/j.antiviral.2005.06.010. PubMed DOI

Sagong H.Y., Parhi A., Bauman J.D., Patel D., Vijayan R.S.K., Das K., Arnod E., LaVoie E.J. 3-Hydroxyquinolin-2(1H)-ones as inhibitors of influenza A endonuclease. ACS Med. Chem. Lett. 2013;4:547–550. doi: 10.1021/ml4001112. PubMed DOI PMC

Carcelli M., Rogolino D., Gatti A., De Luca L., Sechi M., Kumar G., White S.W., Stevaert A., Naesens L. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. Sci. Rep. 2016;6:1–14. doi: 10.1038/srep31500. PubMed DOI PMC

Zima V., Radilova K., Kozisek M., Albinana C.B., Karlukova E., Brynda J., Fanfrlik J., Flieger M., Hodek J., Weber J., et al. Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors. Eur. J. Med. Chem. 2020;208:112754. doi: 10.1016/j.ejmech.2020.112754. PubMed DOI

Sarawek S., Derendorf H., Butterweck V. Pharmacokinetics of luteolin and metabolites in rats. Nat. Prod. Commun. 2008;3:2029–2036. doi: 10.1177/1934578X0800301218. DOI

Thilakarathna S.H., Rupasinghe H.P.V. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients. 2013;5:3367–3387. doi: 10.3390/nu5093367. PubMed DOI PMC

Patani G.A., LaVoie E.J. Bioisosterism: A rational approach in drug design. Chem. Rev. 1996;96:3147–3176. doi: 10.1021/cr950066q. PubMed DOI

Li M., Han X.W., Yu B. Facile synthesis of flavonoid 7-O-glycosides. J. Org. Chem. 2003;68:6842–6845. doi: 10.1021/jo034553e. PubMed DOI

Subramaniapillai S.G. Mannich reaction: A versatile and convenient approach to bioactive skeletons. J. Chem. Sci. 2013;125:467–482. doi: 10.1007/s12039-013-0405-y. DOI

Li Y.Q., Yang F., Wang L., Cao Z., Han T.J., Duan Z.A., Li Z., Zhao W.J. Phosphoramidate protides of five flavones and their antiproliferative activity against HepG2 and L-O2 cell lines. Eur. J. Med. Chem. 2016;112:196–208. doi: 10.1016/j.ejmech.2016.02.012. PubMed DOI

Hirao T., Masunaga T., Ohshiro Y., Agawa T. A Novel synthesis of dialkyl arenephosphonates. Synthesis. 1981;1:56–57. doi: 10.1055/s-1981-29335. DOI

Albinana C.B., Machara A., Rezacova P., Pachl P., Konvalinka J., Kozisek M. Kinetic, thermodynamic and structural analysis of tamiphosphor binding to neuraminidase of H1N1 (2009) pandemic influenza. Eur. J. Med. Chem. 2016;121:100–109. doi: 10.1016/j.ejmech.2016.05.016. PubMed DOI

Huang H., Song C.J., Wang Z., Li M.Y., Chang J.B. Total synthesis of tanshinone IIA. Tetrahedron Lett. 2020;61 doi: 10.1016/j.tetlet.2020.152102. DOI

Cohen D.T., Buchwald S.L. Mild palladium-catalyzed cyanation of (hetero)aryl halides and triflates in aqueous media. Org. Lett. 2015;17:202–205. doi: 10.1021/ol5032359. PubMed DOI PMC

Molander G.A., Shin I. Synthesis and Suzuki-Miyaura cross-coupling reactions of potassium Boc-protected aminomethyltrifluoroborate with aryl and hetaryl halides. Org. Lett. 2011;13:3956–3959. doi: 10.1021/ol2014768. PubMed DOI PMC

Wen G., Liu Q., Hu H.B., Wang D.M., Wu S. Design, synthesis, biological evaluation, and molecular docking of novel flavones as H3R inhibitors. Chem. Biol. Drug Des. 2017;90:580–589. doi: 10.1111/cbdd.12981. PubMed DOI

Helgren T.R., Sciotti R.J., Lee P., Duffy S., Avery V.M., Igbinoba O., Akoto M., Hagen T.J. The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs. Bioorg. Med. Chem. Lett. 2015;25:327–332. doi: 10.1016/j.bmcl.2014.11.039. PubMed DOI

Joshi D., Field J., Murphy J., Abdelrahim M., Schonherr H., Sparrow J.R., Ellestad G., Nakanishi K., Zask A. Synthesis of antioxidants for prevention of age-related macular degeneration. J. Nat. Prod. 2013;76:450–454. doi: 10.1021/np300769c. PubMed DOI PMC

DuBois R.M., Slavish P.J., Baughman B.M., Yun M.K., Bao J., Webby R.J., Webb T.R., White S.W. Structural and biochemical basis for development of influenza virus inhibitors targeting the PA endonuclease. PLoS Pathog. 2012;8:e1002830. doi: 10.1371/journal.ppat.1002830. PubMed DOI PMC

Kabsch W. Xds. Acta Crystallogr. D. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC

Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D. 2010;66:133–144. doi: 10.1107/S0907444909047374. PubMed DOI PMC

Vagin A., Teplyakov A. MOLREP: An automated program for molecular replacement. J. Appl. Crystallogr. 1997;30:1022–1025. doi: 10.1107/S0021889897006766. DOI

Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G.W., McCoy A., et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Struct. Biol. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC

Emsley P., Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D Struct. Biol. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI

Murshudov G.N., Skubak P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., Winn M.D., Long F., Vagin A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D Struct. Biol. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC

Chen V.B., Arendall W.B., Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Struct. Biol. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace