Synthesis and In Vitro Evaluation of C-7 and C-8 Luteolin Derivatives as Influenza Endonuclease Inhibitors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM2015064
the Ministry of Education of the Czech Republic and European Regional Development Fund
CZ.02.1.01/0.0/0.0/16_019/0000729
Ministry of Education of the Czech Republic and European Regional Development Fund
PubMed
34299354
PubMed Central
PMC8305651
DOI
10.3390/ijms22147735
PII: ijms22147735
Knihovny.cz E-zdroje
- Klíčová slova
- Mannich reaction, RNA polymerase, bio-isosterism, cross-coupling, endonuclease inhibitor, flavonoids, influenza,
- MeSH
- antivirové látky chemická syntéza farmakologie MeSH
- endonukleasy antagonisté a inhibitory MeSH
- katalytická doména účinky léků MeSH
- luteolin chemická syntéza farmakologie MeSH
- Orthomyxoviridae účinky léků MeSH
- virové proteiny antagonisté a inhibitory MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antivirové látky MeSH
- endonukleasy MeSH
- luteolin MeSH
- virové proteiny MeSH
The part of the influenza polymerase PA subunit featuring endonuclease activity is a target for anti-influenza therapies, including the FDA-approved drug Xofluza. A general feature of endonuclease inhibitors is their ability to chelate Mg2+ or Mn2+ ions located in the enzyme's catalytic site. Previously, we screened a panel of flavonoids for PA inhibition and found luteolin and its C-glucoside orientin to be potent inhibitors. Through structural analysis, we identified the presence of a 3',4'-dihydroxyphenyl moiety as a crucial feature for sub-micromolar inhibitory activity. Here, we report results from a subsequent investigation exploring structural changes at the C-7 and C-8 positions of luteolin. Experimental IC50 values were determined by AlphaScreen technology. The most potent inhibitors were C-8 derivatives with inhibitory potencies comparable to that of luteolin. Bio-isosteric replacement of the C-7 hydroxyl moiety of luteolin led to a series of compounds with one-order-of-magnitude-lower inhibitory potencies. Using X-ray crystallography, we solved structures of the wild-type PA-N-terminal domain and its I38T mutant in complex with orientin at 1.9 Å and 2.2 Å resolution, respectively.
Zobrazit více v PubMed
Iuliano A.D., Roguski K.M., Chang H.H. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet. 2018;391:1285–1300. doi: 10.1016/S0140-6736(17)33293-2. PubMed DOI PMC
Fodor E. The RNA polymerase of influenza A virus: Mechanisms of viral transcription and replication. Acta Virol. 2013;57:113–122. doi: 10.4149/av_2013_02_113. PubMed DOI
Eisfeld A.J., Neumann G., Kawaoka Y. At the centre: Influenza A virus ribonucleoproteins. Nat. Rev. Microbiol. 2015;13:28–41. doi: 10.1038/nrmicro3367. PubMed DOI PMC
Ortin J., Martin-Benito J. The RNA synthesis machinery of negative-stranded RNA viruses. Virology. 2015;479:532–544. doi: 10.1016/j.virol.2015.03.018. PubMed DOI
Dias A., Bouvier D., Crepin T., McCarthy A.A., Hart D.J., Baudin F., Cusack S., Ruigrok R.W.H. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature. 2009;458:914–918. doi: 10.1038/nature07745. PubMed DOI
Walker A.P., Fodor E. Interplay between influenza virus and the host RNA polymerase II transcriptional machinery. Trends Microbiol. 2019;27:398–407. doi: 10.1016/j.tim.2018.12.013. PubMed DOI PMC
De Vlugt C., Sikora D., Pelchat M. Insight into influenza: A virus cap-snatching. Viruses. 2018;10:641. doi: 10.3390/v10110641. PubMed DOI PMC
Guilligay D., Tarendeau F., Resa-Infante P., Coloma R., Crepin T., Sehr P., Lewis J., Ruigrok R.W.H., Ortin J., Hart D.J., et al. The structural basis for cap binding by influenza virus polymerase subunit PB2. Nat. Struct. Mol. Biol. 2008;15:500–506. doi: 10.1038/nsmb.1421. PubMed DOI
Credille C.V., Dick B.L., Morrison C.N., Stokes R.W., Adamek R.N., Wu N.C., Wilson I.A., Cohen S.M. Structure-activity relationships in metal-binding pharmacophores for influenza endonuclease. J. Med. Chem. 2018;61:10206–10217. doi: 10.1021/acs.jmedchem.8b01363. PubMed DOI PMC
Bouloy M., Plotch S.J., Krug R.M. Globin messenger-RNAs are primers for transcription of influenza viral-RNA In Vitro. Proc. Natl. Acad. Sci. USA. 1978;75:4886–4890. doi: 10.1073/pnas.75.10.4886. PubMed DOI PMC
Hayden F.G., Shindo N. Influenza virus polymerase inhibitors in clinical development. Curr. Opin. Infect. Dis. 2019;32:176–186. doi: 10.1097/QCO.0000000000000532. PubMed DOI PMC
Stevaert A., Naesens L. The influenza virus polymerase complex: An update on its structure, functions, and significance for antiviral drug design. Med. Res. Rev. 2016;36:1127–1173. doi: 10.1002/med.21401. PubMed DOI PMC
Clark M.P., Ledeboer M.W., Davies I., Byrn R.A., Jones S.M., Perola E., Tsai A., Jacobs M., Nti-Addae K., Bandarage U.K., et al. Discovery of a novel, first-in-class, orally bioavailable azaindole inhibitor (VX-787) of influenza PB2. J. Med. Chem. 2014;57:6668–6678. doi: 10.1021/jm5007275. PubMed DOI
Byrn R.A., Jones S.M., Bennett H.B., Bral C., Clark M.P., Jacobs M.D., Kwong A.D., Ledeboer M.W., Leeman J.R., McNeil C.F., et al. Preclinical activity of VX-787, a first-in-class, orally bioavailable inhibitor of the influenza virus polymerase PB2 subunit. Antimicrob. Agents Chemother. 2015;59:1574–1587. doi: 10.1128/AAC.04623-14. PubMed DOI PMC
Sugiyama K., Obayashi E., Kawaguchi A., Suzuki Y., Tame J.R.H., Nagata K., Park S.Y. Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase. EMBO J. 2009;28:1803–1811. doi: 10.1038/emboj.2009.138. PubMed DOI PMC
He X.J., Zhou J., Bartlam M., Zhang R.G., Ma J.Y., Lou Z.Y., Li X.M., Li J.J., Joachimiak A., Zeng Z.H., et al. Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. Nature. 2008;454:1123–1126. doi: 10.1038/nature07120. PubMed DOI
Hejdanek J., Radilova K., Pachl P., Hodek J., Machara A., Weber J., Rezacova P., Konvalinka J., Kozisek M. Structural characterization of the interaction between the C-terminal domain of the influenza polymerase PA subunit and an optimized small peptide inhibitor. Antivir. Res. 2021;185:104971. doi: 10.1016/j.antiviral.2020.104971. PubMed DOI
Ju H., Zhang J., Huang B.S., Kang D.W., Huang B., Liu X.Y., Zhan P. Inhibitors of influenza virus polymerase acidic (PA) endonuclease: Contemporary developments and perspectives. J. Med. Chem. 2017;60:3533–3551. doi: 10.1021/acs.jmedchem.6b01227. PubMed DOI
Kowalinski E., Zubieta C., Wolkerstorfer A., Szolar O.H.J., Ruigrok R.W.H., Cusack S. Structural analysis of specific metal chelating inhibitor binding to the endonuclease domain of influenza pH1N1 (2009) polymerase. PLoS Pathog. 2012;8:e1002831. doi: 10.1371/journal.ppat.1002831. PubMed DOI PMC
Chen A.Y., Adamek R.N., Dick B.L., Credille C.V., Morrison C.N., Cohen S.M. Targeting metalloenzymes for therapeutic intervention. Chem. Rev. 2019;119:1323–1455. doi: 10.1021/acs.chemrev.8b00201. PubMed DOI PMC
Rouffet M., Cohen S.M. Emerging trends in metalloprotein inhibition. Dalton Trans. 2011;40:3445–3454. doi: 10.1039/c0dt01743d. PubMed DOI PMC
Riccardi L., Genna V., De Vivo M. Metal-ligand interactions in drug design. Nat. Rev. Chem. 2018;2:100–112. doi: 10.1038/s41570-018-0018-6. DOI
Yang Y., Hu X.Q., Li Q.S., Zhang X.X., Ruan B.F., Xu J., Liao C.Z. Metalloprotein inhibitors for the treatment of human diseases. Curr. Top. Med. Chem. 2016;16:384–396. doi: 10.2174/1568026615666150813145218. PubMed DOI
Kikuchi T., Watanabe A. Baloxavir heralds a new era in influenza virus biology. Respir. Investig. 2019;57:1–2. doi: 10.1016/j.resinv.2018.10.002. PubMed DOI
Noshi T., Kitano M., Taniguchi K., Yamamoto A., Omoto S., Baba K., Hashimoto T., Ishida K., Kushima Y., Hattori K., et al. In Vitro characterization of baloxavir acid, a first-in-class cap-dependent endonuclease inhibitor of the influenza virus polymerase PA subunit. Antivir. Res. 2018;160:109–117. doi: 10.1016/j.antiviral.2018.10.008. PubMed DOI
Omoto S., Speranzini V., Hashimoto T., Noshi T., Yamaguchi H., Kawai M., Kawaguchi K., Uehara T., Shishido T., Naito A., et al. Characterization of influenza virus variants induced by treatment with the endonuclease inhibitor baloxavir marboxil. Sci. Rep. 2018;8:1–15. doi: 10.1038/s41598-018-27890-4. PubMed DOI PMC
Hastings J.C., Selnick H., Wolanski B., Tomassini J.E. Anti-influenza virus activities of 4-substituted 2,4-dioxobutanoic acid inhibitors. Antimicrob. Agents Chemother. 1996;40:1304–1307. doi: 10.1128/AAC.40.5.1304. PubMed DOI PMC
Liao Y.X., Ye Y.L., Li S.M., Zhuang Y.L., Chen L.Y., Chen J.X., Cui Z.N., Huo L.J., Liu S.W., Song G.P. Synthesis and SARs of dopamine derivatives as potential inhibitors of influenza virus PA(N) endonuclease. Eur. J. Med. Chem. 2020;189:112048. doi: 10.1016/j.ejmech.2020.112048. PubMed DOI
Sagong H.Y., Bauman J.D., Patel D., Das K., Arnold E., LaVoie E.J. Phenyl substituted 4-Hydroxypyridazin-3(2H)-ones and 5-Hydroxypyrimidin-4(3H)-ones: Inhibitors of influenza A endonuclease. J. Med. Chem. 2014;57:8086–8098. doi: 10.1021/jm500958x. PubMed DOI PMC
Parhi A.K., Xiang A., Bauman J.D., Patel D., Vijayan R.S.K., Das K., Arnold E., LaVoie E.J. Phenyl substituted 3-hydroxypyridin-2(1H)-ones: Inhibitors of influenza A endonuclease. Bioorg. Med. Chem. 2013;21:6435–6446. doi: 10.1016/j.bmc.2013.08.053. PubMed DOI
Credille C.V., Chen Y., Cohen S.M. Fragment-based identification of influenza endonuclease inhibitors. J. Med. Chem. 2016;59:6444–6454. doi: 10.1021/acs.jmedchem.6b00628. PubMed DOI PMC
Tomassini J.E., Davies M.E., Hastings J.C., Lingham R., Mojena M., Raghoobar S.L., Singh S.B., Tkacz J.S., Goetz M.A. A novel antiviral agent which inhibits the endonuclease of influenza viruses. Antimicrob. Agents Chemother. 1996;40:1189–1193. doi: 10.1128/AAC.40.5.1189. PubMed DOI PMC
Kuzuhara T., Iwai Y., Takahashi H., Hatakeyama D., Echigo N. Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr. 2009;1:RRN1052. doi: 10.1371/currents.RRN1052. PubMed DOI PMC
Song J.M., Lee K.H., Seong B.L. Antiviral effect of catechins in green tea on influenza virus. Antivir. Res. 2005;68:66–74. doi: 10.1016/j.antiviral.2005.06.010. PubMed DOI
Sagong H.Y., Parhi A., Bauman J.D., Patel D., Vijayan R.S.K., Das K., Arnod E., LaVoie E.J. 3-Hydroxyquinolin-2(1H)-ones as inhibitors of influenza A endonuclease. ACS Med. Chem. Lett. 2013;4:547–550. doi: 10.1021/ml4001112. PubMed DOI PMC
Carcelli M., Rogolino D., Gatti A., De Luca L., Sechi M., Kumar G., White S.W., Stevaert A., Naesens L. N-acylhydrazone inhibitors of influenza virus PA endonuclease with versatile metal binding modes. Sci. Rep. 2016;6:1–14. doi: 10.1038/srep31500. PubMed DOI PMC
Zima V., Radilova K., Kozisek M., Albinana C.B., Karlukova E., Brynda J., Fanfrlik J., Flieger M., Hodek J., Weber J., et al. Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors. Eur. J. Med. Chem. 2020;208:112754. doi: 10.1016/j.ejmech.2020.112754. PubMed DOI
Sarawek S., Derendorf H., Butterweck V. Pharmacokinetics of luteolin and metabolites in rats. Nat. Prod. Commun. 2008;3:2029–2036. doi: 10.1177/1934578X0800301218. DOI
Thilakarathna S.H., Rupasinghe H.P.V. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients. 2013;5:3367–3387. doi: 10.3390/nu5093367. PubMed DOI PMC
Patani G.A., LaVoie E.J. Bioisosterism: A rational approach in drug design. Chem. Rev. 1996;96:3147–3176. doi: 10.1021/cr950066q. PubMed DOI
Li M., Han X.W., Yu B. Facile synthesis of flavonoid 7-O-glycosides. J. Org. Chem. 2003;68:6842–6845. doi: 10.1021/jo034553e. PubMed DOI
Subramaniapillai S.G. Mannich reaction: A versatile and convenient approach to bioactive skeletons. J. Chem. Sci. 2013;125:467–482. doi: 10.1007/s12039-013-0405-y. DOI
Li Y.Q., Yang F., Wang L., Cao Z., Han T.J., Duan Z.A., Li Z., Zhao W.J. Phosphoramidate protides of five flavones and their antiproliferative activity against HepG2 and L-O2 cell lines. Eur. J. Med. Chem. 2016;112:196–208. doi: 10.1016/j.ejmech.2016.02.012. PubMed DOI
Hirao T., Masunaga T., Ohshiro Y., Agawa T. A Novel synthesis of dialkyl arenephosphonates. Synthesis. 1981;1:56–57. doi: 10.1055/s-1981-29335. DOI
Albinana C.B., Machara A., Rezacova P., Pachl P., Konvalinka J., Kozisek M. Kinetic, thermodynamic and structural analysis of tamiphosphor binding to neuraminidase of H1N1 (2009) pandemic influenza. Eur. J. Med. Chem. 2016;121:100–109. doi: 10.1016/j.ejmech.2016.05.016. PubMed DOI
Huang H., Song C.J., Wang Z., Li M.Y., Chang J.B. Total synthesis of tanshinone IIA. Tetrahedron Lett. 2020;61 doi: 10.1016/j.tetlet.2020.152102. DOI
Cohen D.T., Buchwald S.L. Mild palladium-catalyzed cyanation of (hetero)aryl halides and triflates in aqueous media. Org. Lett. 2015;17:202–205. doi: 10.1021/ol5032359. PubMed DOI PMC
Molander G.A., Shin I. Synthesis and Suzuki-Miyaura cross-coupling reactions of potassium Boc-protected aminomethyltrifluoroborate with aryl and hetaryl halides. Org. Lett. 2011;13:3956–3959. doi: 10.1021/ol2014768. PubMed DOI PMC
Wen G., Liu Q., Hu H.B., Wang D.M., Wu S. Design, synthesis, biological evaluation, and molecular docking of novel flavones as H3R inhibitors. Chem. Biol. Drug Des. 2017;90:580–589. doi: 10.1111/cbdd.12981. PubMed DOI
Helgren T.R., Sciotti R.J., Lee P., Duffy S., Avery V.M., Igbinoba O., Akoto M., Hagen T.J. The synthesis, antimalarial activity and CoMFA analysis of novel aminoalkylated quercetin analogs. Bioorg. Med. Chem. Lett. 2015;25:327–332. doi: 10.1016/j.bmcl.2014.11.039. PubMed DOI
Joshi D., Field J., Murphy J., Abdelrahim M., Schonherr H., Sparrow J.R., Ellestad G., Nakanishi K., Zask A. Synthesis of antioxidants for prevention of age-related macular degeneration. J. Nat. Prod. 2013;76:450–454. doi: 10.1021/np300769c. PubMed DOI PMC
DuBois R.M., Slavish P.J., Baughman B.M., Yun M.K., Bao J., Webby R.J., Webb T.R., White S.W. Structural and biochemical basis for development of influenza virus inhibitors targeting the PA endonuclease. PLoS Pathog. 2012;8:e1002830. doi: 10.1371/journal.ppat.1002830. PubMed DOI PMC
Kabsch W. Xds. Acta Crystallogr. D. 2010;66:125–132. doi: 10.1107/S0907444909047337. PubMed DOI PMC
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D. 2010;66:133–144. doi: 10.1107/S0907444909047374. PubMed DOI PMC
Vagin A., Teplyakov A. MOLREP: An automated program for molecular replacement. J. Appl. Crystallogr. 1997;30:1022–1025. doi: 10.1107/S0021889897006766. DOI
Winn M.D., Ballard C.C., Cowtan K.D., Dodson E.J., Emsley P., Evans P.R., Keegan R.M., Krissinel E.B., Leslie A.G.W., McCoy A., et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D Struct. Biol. 2011;67:235–242. doi: 10.1107/S0907444910045749. PubMed DOI PMC
Emsley P., Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. Sect. D Struct. Biol. 2004;60:2126–2132. doi: 10.1107/S0907444904019158. PubMed DOI
Murshudov G.N., Skubak P., Lebedev A.A., Pannu N.S., Steiner R.A., Nicholls R.A., Winn M.D., Long F., Vagin A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D Struct. Biol. 2011;67:355–367. doi: 10.1107/S0907444911001314. PubMed DOI PMC
Chen V.B., Arendall W.B., Headd J.J., Keedy D.A., Immormino R.M., Kapral G.J., Murray L.W., Richardson J.S., Richardson D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. Sect. D Struct. Biol. 2010;66:12–21. doi: 10.1107/S0907444909042073. PubMed DOI PMC