Tuning Photodynamic Properties of BODIPY Dyes, Porphyrins' Little Sisters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-09212S
Grantová Agentura České Republiky
SVV 260 547
Univerzita Karlova v Praze
PRIMUS/20/SCI/013
Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000841
European Regional Development Fund
2016/21/D/NZ7/01540
Narodowe Centrum Nauki
PubMed
34299469
PubMed Central
PMC8305389
DOI
10.3390/molecules26144194
PII: molecules26144194
Knihovny.cz E-zdroje
- Klíčová slova
- BODIPY, fluorescence, heavy atom effect, photodynamic therapy, singlet oxygen,
- Publikační typ
- časopisecké články MeSH
The photodynamic properties of a series of non-halogenated, dibrominated and diiodinated BODIPYs with a phthalimido or amino end modification on the phenoxypentyl and phenoxyoctyl linker in the meso position were investigated. Halogen substitution substantially increased the singlet oxygen production based on the heavy atom effect. This increase was accompanied by a higher photodynamic activity against skin melanoma cancer cells SK-MEL-28, with the best compound reaching an EC50 = 0.052 ± 0.01 µM upon light activation. The dark toxicity (toxicity without light activation) of all studied dyes was not detected up to the solubility limit in cell culture medium (10 µM). All studied BODIPY derivatives were predominantly found in adiposomes (lipid droplets) with further lower signals colocalized in either endolysosomal vesicles or the endoplasmic reticulum. A detailed investigation of cell death indicated that the compounds act primarily through the induction of apoptosis. In conclusion, halogenation in the 2,6 position of BODIPY dyes is crucial for the efficient photodynamic activity of these photosensitizers.
Zobrazit více v PubMed
Matsuo Y., Ogumi K., Jeon I., Wang H., Nakagawa T. Recent progress in porphyrin- and phthalocyanine-containing perovskite solar cells. RSC Adv. 2020;10:32678–32689. doi: 10.1039/D0RA03234D. PubMed DOI PMC
Urbani M., de la Torre G., Nazeeruddin M.K., Torres T. Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells. Chem. Soc. Rev. 2019;48:2738–2766. doi: 10.1039/C9CS00059C. PubMed DOI
Li C.Y., Zhang X.B., Qiao L., Zhao Y., He C.M., Huan S.Y., Lu L.M., Jian L.X., Shen G.L., Yu R.Q. Naphthalimide-Porphyrin Hybrid Based Ratiometric Bioimaging Probe for Hg2+: Well-Resolved Emission Spectra and Unique Specificity. Anal. Chem. 2009;81:9993–10001. doi: 10.1021/ac9018445. PubMed DOI
Pereira C.F., Figueira F., Mendes R.F., Rocha J., Hupp J.T., Farha O.K., Simoes M.M.Q., Tome J.P.C., Paz F.A.A. Bifunctional Porphyrin-Based Nano-Metal-Organic Frameworks: Catalytic and Chemosensing Studies. Inorg. Chem. 2018;57:3855–3864. doi: 10.1021/acs.inorgchem.7b03214. PubMed DOI
Xue X.D., Lindstrom A., Li Y.P. Porphyrin-Based Nanomedicines for Cancer Treatment. Bioconjugate Chem. 2019;30:1585–1603. doi: 10.1021/acs.bioconjchem.9b00231. PubMed DOI
Almeida-Marrero V., Gonzalez-Delgado J.A., Torres T. Emerging Perspectives on Applications of Porphyrinoids for Photodynamic Therapy and Photoinactivation of Microorganisms. Macroheterocycles. 2019;12:8–16. doi: 10.6060/mhc181220t. DOI
Sobotta L., Skupin-Mrugalska P., Piskorz J., Mielcarek J. Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur. J. Med. Chem. 2019;175:72–106. doi: 10.1016/j.ejmech.2019.04.057. PubMed DOI
Ogilby P.R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010;39:3181–3209. doi: 10.1039/b926014p. PubMed DOI
Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998;90:889–905. doi: 10.1093/jnci/90.12.889. PubMed DOI PMC
Lo P.C., Rodriguez-Morgade M.S., Pandey R.K., Ng D.K.P., Torres T., Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 2020;49:1041–1056. doi: 10.1039/C9CS00129H. PubMed DOI
Kamkaew A., Lim S.H., Lee H.B., Kiew L.V., Chung L.Y., Burgess K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 2013;42:77–88. doi: 10.1039/C2CS35216H. PubMed DOI PMC
Ulrich G., Ziessel R., Harriman A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angew. Chem. Int. Ed. 2008;47:1184–1201. doi: 10.1002/anie.200702070. PubMed DOI
Boens N., Verbelen B., Ortiz M.J., Jiao L., Dehaen W. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coord. Chem. Rev. 2019;399:213024. doi: 10.1016/j.ccr.2019.213024. DOI
Bañuelos J. BODIPY Dye, the Most Versatile Fluorophore Ever? Chem. Rec. 2016;16:335–348. doi: 10.1002/tcr.201500238. PubMed DOI
Qin Y., Liu X., Jia P.P., Xu L., Yang H.B. BODIPY-based macrocycles. Chem. Soc. Rev. 2020;49:5678–5703. doi: 10.1039/C9CS00797K. PubMed DOI
Ni Y., Wu J.S. Far-red and near infrared BODIPY dyes: Synthesis and applications for fluorescent pH probes and bio-imaging. Org. Biomol. Chem. 2014;12:3774–3791. doi: 10.1039/c3ob42554a. PubMed DOI
Benniston A.C., Copley G. Lighting the way ahead with boron dipyrromethene (Bodipy) dyes. Phys. Chem. Chem. Phys. 2009;11:4124–4131. doi: 10.1039/b901383k. PubMed DOI
Yuan L., Lin W.Y., Zheng K.B., He L.W., Huang W.M. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev. 2013;42:622–661. doi: 10.1039/C2CS35313J. PubMed DOI
Kowada T., Maeda H., Kikuchi K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 2015;44:4953–4972. doi: 10.1039/C5CS00030K. PubMed DOI
Zhang W.Q., Ahmed A., Cong H.L., Wang S., Shen Y.Q., Yu B. Application of multifunctional BODIPY in photodynamic therapy. Dyes Pigm. 2021;185:108937. doi: 10.1016/j.dyepig.2020.108937. DOI
Turksoy A., Yildiz D., Akkaya E.U. Photosensitization and controlled photosensitization with BODIPY dyes. Coord. Chem. Rev. 2019;379:47–64. doi: 10.1016/j.ccr.2017.09.029. DOI
Grosjean P., Wagnieres G., Fontolliet C., van den Bergh H., Monnier P. Clinical photodynamic therapy for superficial cancer in the oesophagus and the bronchi: 514 nm compared with 630 nm light irradiation after sensitization with Photofrin II. Br. J. Cancer. 1998;77:1989–1995. doi: 10.1038/bjc.1998.330. PubMed DOI PMC
Sharma U., Kumar P., Kumar N., Singh B. Recent Advances in the Chemistry of Phthalimide Analogues and their Therapeutic Potential. Mini-Rev. Med. Chem. 2010;10:678–704. doi: 10.2174/138955710791572442. PubMed DOI
Alanazi A.M., El-Azab A.S., Al-Suwaidan I.A., ElTahir K.E.H., Asiri Y.A., Abdel-Aziz N.I., Abdel-Aziz A.A.M. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: Anti-inflammatory and analgesic activities. Eur. J. Med. Chem. 2015;92:115–123. doi: 10.1016/j.ejmech.2014.12.039. PubMed DOI
Dos Santos J.L., Lanaro C., Chelucci R.C., Gambero S., Bosquesi P.L., Reis J.S., Lima L.M., Cerecetto H., Gonzalez M., Costa F.F., et al. Design, Synthesis, and Pharmacological Evaluation of Novel Hybrid Compounds to Treat Sickle Cell Disease Symptoms. Part II: Furoxan Derivatives. J. Med. Chem. 2012;55:7583–7592. doi: 10.1021/jm300602n. PubMed DOI
Dick D.L., Rao T.V.S., Sukumaran D., Lawrence D.S. Molecular encapsulation: Cyclodextrin-based analogs of heme-containing proteins. J. Am. Chem. Soc. 1992;114:2664–2669. doi: 10.1021/ja00033a046. DOI
Piskorz J., Dlugaszewska J., Porolnik W., Teubert A., Mielcarek J. Boron-dipyrromethene derivatives bearing N-alkyl phthalimide and amine substituents of potential application in the photoinactivation of bacteria. Dyes Pigm. 2020;178:108322. doi: 10.1016/j.dyepig.2020.108322. DOI
Awuah S.G., You Y. Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Adv. 2012;2:11169–11183. doi: 10.1039/c2ra21404k. DOI
Zhao J.Z., Xu K.J., Yang W.B., Wang Z.J., Zhong F.F. The triplet excited state of Bodipy: Formation, modulation and application. Chem. Soc. Rev. 2015;44:8904–8939. doi: 10.1039/C5CS00364D. PubMed DOI
Durantini A.M., Heredia D.A., Durantini J.E., Durantini E.N. BODIPYs to the rescue: Potential applications in photodynamic inactivation. Eur. J. Med. Chem. 2018;144:651–661. doi: 10.1016/j.ejmech.2017.12.068. PubMed DOI
Fischer M., Georges J. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem. Phys. Lett. 1996;260:115–118. doi: 10.1016/0009-2614(96)00838-X. DOI
Redmond R.W., Gamlin J.N. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 1999;70:391–475. doi: 10.1111/j.1751-1097.1999.tb08240.x. PubMed DOI
Atilgan S., Ekmekci Z., Dogan A.L., Guc D., Akkaya E.U. Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy. Chem. Commun. 2006:4398–4400. doi: 10.1039/b612347c. PubMed DOI
Piskorz J., Porolnik W., Kucinska M., Dlugaszewska J., Murias M., Mielcarek J. BODIPY-Based Photosensitizers as Potential Anticancer and Antibacterial Agents: Role of the Positive Charge and the Heavy Atom Effect. ChemMedChem. 2021;16:399–411. doi: 10.1002/cmdc.202000529. PubMed DOI
Caruso E., Gariboldi M., Sangion A., Gramatica P., Banfi S. Synthesis, photodynamic activity, and quantitative structure-activity relationship modelling of a series of BODIPYs. J. Photochem. Photobiol. B. 2017;167:269–281. doi: 10.1016/j.jphotobiol.2017.01.012. PubMed DOI
He H., Lo P.-C., Yeung S.-L., Fong W.-P., Ng D.K.P. Preparation of unsymmetrical distyryl BODIPY derivatives and effects of the styryl substituents on their in vitro photodynamic properties. Chem. Commun. 2011;47:4748–4750. doi: 10.1039/c1cc10727e. PubMed DOI
Machacek M., Demuth J., Cermak P., Vavreckova M., Hruba L., Jedlickova A., Kubat P., Simunek T., Novakova V., Zimcik P. Tetra(3,4-pyrido)porphyrazines Caught in the Cationic Cage: Toward Nanomolar Active Photosensitizers. J. Med. Chem. 2016;59:9443–9456. doi: 10.1021/acs.jmedchem.6b01140. PubMed DOI
Tabero A., García-Garrido F., Prieto-Castañeda A., Palao E., Agarrabeitia A.R., García-Moreno I., Villanueva A., de la Moya S., Ortiz M.J. BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis. Chem. Commun. 2020;56:940–943. doi: 10.1039/C9CC09397D. PubMed DOI
Li G., Li J., Otsuka Y., Zhang S., Takahashi M., Yamada K. A BODIPY-Based Fluorogenic Probe for Specific Imaging of Lipid Droplets. Materials. 2020;13:677. doi: 10.3390/ma13030677. PubMed DOI PMC
Novakova V., Miletin M., Filandrová T., Lenčo J., Růžička A., Zimcik P. Role of Steric Hindrance in the Newman-Kwart Rearrangement and in the Synthesis and Photophysical Properties of Arylsulfanyl Tetrapyrazinoporphyrazines. J. Org. Chem. 2014;79:2082–2093. doi: 10.1021/jo402791c. PubMed DOI