Tuning Photodynamic Properties of BODIPY Dyes, Porphyrins' Little Sisters

. 2021 Jul 10 ; 26 (14) : . [epub] 20210710

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34299469

Grantová podpora
20-09212S Grantová Agentura České Republiky
SVV 260 547 Univerzita Karlova v Praze
PRIMUS/20/SCI/013 Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000841 European Regional Development Fund
2016/21/D/NZ7/01540 Narodowe Centrum Nauki

The photodynamic properties of a series of non-halogenated, dibrominated and diiodinated BODIPYs with a phthalimido or amino end modification on the phenoxypentyl and phenoxyoctyl linker in the meso position were investigated. Halogen substitution substantially increased the singlet oxygen production based on the heavy atom effect. This increase was accompanied by a higher photodynamic activity against skin melanoma cancer cells SK-MEL-28, with the best compound reaching an EC50 = 0.052 ± 0.01 µM upon light activation. The dark toxicity (toxicity without light activation) of all studied dyes was not detected up to the solubility limit in cell culture medium (10 µM). All studied BODIPY derivatives were predominantly found in adiposomes (lipid droplets) with further lower signals colocalized in either endolysosomal vesicles or the endoplasmic reticulum. A detailed investigation of cell death indicated that the compounds act primarily through the induction of apoptosis. In conclusion, halogenation in the 2,6 position of BODIPY dyes is crucial for the efficient photodynamic activity of these photosensitizers.

Zobrazit více v PubMed

Matsuo Y., Ogumi K., Jeon I., Wang H., Nakagawa T. Recent progress in porphyrin- and phthalocyanine-containing perovskite solar cells. RSC Adv. 2020;10:32678–32689. doi: 10.1039/D0RA03234D. PubMed DOI PMC

Urbani M., de la Torre G., Nazeeruddin M.K., Torres T. Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells. Chem. Soc. Rev. 2019;48:2738–2766. doi: 10.1039/C9CS00059C. PubMed DOI

Li C.Y., Zhang X.B., Qiao L., Zhao Y., He C.M., Huan S.Y., Lu L.M., Jian L.X., Shen G.L., Yu R.Q. Naphthalimide-Porphyrin Hybrid Based Ratiometric Bioimaging Probe for Hg2+: Well-Resolved Emission Spectra and Unique Specificity. Anal. Chem. 2009;81:9993–10001. doi: 10.1021/ac9018445. PubMed DOI

Pereira C.F., Figueira F., Mendes R.F., Rocha J., Hupp J.T., Farha O.K., Simoes M.M.Q., Tome J.P.C., Paz F.A.A. Bifunctional Porphyrin-Based Nano-Metal-Organic Frameworks: Catalytic and Chemosensing Studies. Inorg. Chem. 2018;57:3855–3864. doi: 10.1021/acs.inorgchem.7b03214. PubMed DOI

Xue X.D., Lindstrom A., Li Y.P. Porphyrin-Based Nanomedicines for Cancer Treatment. Bioconjugate Chem. 2019;30:1585–1603. doi: 10.1021/acs.bioconjchem.9b00231. PubMed DOI

Almeida-Marrero V., Gonzalez-Delgado J.A., Torres T. Emerging Perspectives on Applications of Porphyrinoids for Photodynamic Therapy and Photoinactivation of Microorganisms. Macroheterocycles. 2019;12:8–16. doi: 10.6060/mhc181220t. DOI

Sobotta L., Skupin-Mrugalska P., Piskorz J., Mielcarek J. Porphyrinoid photosensitizers mediated photodynamic inactivation against bacteria. Eur. J. Med. Chem. 2019;175:72–106. doi: 10.1016/j.ejmech.2019.04.057. PubMed DOI

Ogilby P.R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010;39:3181–3209. doi: 10.1039/b926014p. PubMed DOI

Dougherty T.J., Gomer C.J., Henderson B.W., Jori G., Kessel D., Korbelik M., Moan J., Peng Q. Photodynamic therapy. J. Natl. Cancer Inst. 1998;90:889–905. doi: 10.1093/jnci/90.12.889. PubMed DOI PMC

Lo P.C., Rodriguez-Morgade M.S., Pandey R.K., Ng D.K.P., Torres T., Dumoulin F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 2020;49:1041–1056. doi: 10.1039/C9CS00129H. PubMed DOI

Kamkaew A., Lim S.H., Lee H.B., Kiew L.V., Chung L.Y., Burgess K. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 2013;42:77–88. doi: 10.1039/C2CS35216H. PubMed DOI PMC

Ulrich G., Ziessel R., Harriman A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angew. Chem. Int. Ed. 2008;47:1184–1201. doi: 10.1002/anie.200702070. PubMed DOI

Boens N., Verbelen B., Ortiz M.J., Jiao L., Dehaen W. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coord. Chem. Rev. 2019;399:213024. doi: 10.1016/j.ccr.2019.213024. DOI

Bañuelos J. BODIPY Dye, the Most Versatile Fluorophore Ever? Chem. Rec. 2016;16:335–348. doi: 10.1002/tcr.201500238. PubMed DOI

Qin Y., Liu X., Jia P.P., Xu L., Yang H.B. BODIPY-based macrocycles. Chem. Soc. Rev. 2020;49:5678–5703. doi: 10.1039/C9CS00797K. PubMed DOI

Ni Y., Wu J.S. Far-red and near infrared BODIPY dyes: Synthesis and applications for fluorescent pH probes and bio-imaging. Org. Biomol. Chem. 2014;12:3774–3791. doi: 10.1039/c3ob42554a. PubMed DOI

Benniston A.C., Copley G. Lighting the way ahead with boron dipyrromethene (Bodipy) dyes. Phys. Chem. Chem. Phys. 2009;11:4124–4131. doi: 10.1039/b901383k. PubMed DOI

Yuan L., Lin W.Y., Zheng K.B., He L.W., Huang W.M. Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem. Soc. Rev. 2013;42:622–661. doi: 10.1039/C2CS35313J. PubMed DOI

Kowada T., Maeda H., Kikuchi K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 2015;44:4953–4972. doi: 10.1039/C5CS00030K. PubMed DOI

Zhang W.Q., Ahmed A., Cong H.L., Wang S., Shen Y.Q., Yu B. Application of multifunctional BODIPY in photodynamic therapy. Dyes Pigm. 2021;185:108937. doi: 10.1016/j.dyepig.2020.108937. DOI

Turksoy A., Yildiz D., Akkaya E.U. Photosensitization and controlled photosensitization with BODIPY dyes. Coord. Chem. Rev. 2019;379:47–64. doi: 10.1016/j.ccr.2017.09.029. DOI

Grosjean P., Wagnieres G., Fontolliet C., van den Bergh H., Monnier P. Clinical photodynamic therapy for superficial cancer in the oesophagus and the bronchi: 514 nm compared with 630 nm light irradiation after sensitization with Photofrin II. Br. J. Cancer. 1998;77:1989–1995. doi: 10.1038/bjc.1998.330. PubMed DOI PMC

Sharma U., Kumar P., Kumar N., Singh B. Recent Advances in the Chemistry of Phthalimide Analogues and their Therapeutic Potential. Mini-Rev. Med. Chem. 2010;10:678–704. doi: 10.2174/138955710791572442. PubMed DOI

Alanazi A.M., El-Azab A.S., Al-Suwaidan I.A., ElTahir K.E.H., Asiri Y.A., Abdel-Aziz N.I., Abdel-Aziz A.A.M. Structure-based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: Anti-inflammatory and analgesic activities. Eur. J. Med. Chem. 2015;92:115–123. doi: 10.1016/j.ejmech.2014.12.039. PubMed DOI

Dos Santos J.L., Lanaro C., Chelucci R.C., Gambero S., Bosquesi P.L., Reis J.S., Lima L.M., Cerecetto H., Gonzalez M., Costa F.F., et al. Design, Synthesis, and Pharmacological Evaluation of Novel Hybrid Compounds to Treat Sickle Cell Disease Symptoms. Part II: Furoxan Derivatives. J. Med. Chem. 2012;55:7583–7592. doi: 10.1021/jm300602n. PubMed DOI

Dick D.L., Rao T.V.S., Sukumaran D., Lawrence D.S. Molecular encapsulation: Cyclodextrin-based analogs of heme-containing proteins. J. Am. Chem. Soc. 1992;114:2664–2669. doi: 10.1021/ja00033a046. DOI

Piskorz J., Dlugaszewska J., Porolnik W., Teubert A., Mielcarek J. Boron-dipyrromethene derivatives bearing N-alkyl phthalimide and amine substituents of potential application in the photoinactivation of bacteria. Dyes Pigm. 2020;178:108322. doi: 10.1016/j.dyepig.2020.108322. DOI

Awuah S.G., You Y. Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Adv. 2012;2:11169–11183. doi: 10.1039/c2ra21404k. DOI

Zhao J.Z., Xu K.J., Yang W.B., Wang Z.J., Zhong F.F. The triplet excited state of Bodipy: Formation, modulation and application. Chem. Soc. Rev. 2015;44:8904–8939. doi: 10.1039/C5CS00364D. PubMed DOI

Durantini A.M., Heredia D.A., Durantini J.E., Durantini E.N. BODIPYs to the rescue: Potential applications in photodynamic inactivation. Eur. J. Med. Chem. 2018;144:651–661. doi: 10.1016/j.ejmech.2017.12.068. PubMed DOI

Fischer M., Georges J. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem. Phys. Lett. 1996;260:115–118. doi: 10.1016/0009-2614(96)00838-X. DOI

Redmond R.W., Gamlin J.N. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 1999;70:391–475. doi: 10.1111/j.1751-1097.1999.tb08240.x. PubMed DOI

Atilgan S., Ekmekci Z., Dogan A.L., Guc D., Akkaya E.U. Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy. Chem. Commun. 2006:4398–4400. doi: 10.1039/b612347c. PubMed DOI

Piskorz J., Porolnik W., Kucinska M., Dlugaszewska J., Murias M., Mielcarek J. BODIPY-Based Photosensitizers as Potential Anticancer and Antibacterial Agents: Role of the Positive Charge and the Heavy Atom Effect. ChemMedChem. 2021;16:399–411. doi: 10.1002/cmdc.202000529. PubMed DOI

Caruso E., Gariboldi M., Sangion A., Gramatica P., Banfi S. Synthesis, photodynamic activity, and quantitative structure-activity relationship modelling of a series of BODIPYs. J. Photochem. Photobiol. B. 2017;167:269–281. doi: 10.1016/j.jphotobiol.2017.01.012. PubMed DOI

He H., Lo P.-C., Yeung S.-L., Fong W.-P., Ng D.K.P. Preparation of unsymmetrical distyryl BODIPY derivatives and effects of the styryl substituents on their in vitro photodynamic properties. Chem. Commun. 2011;47:4748–4750. doi: 10.1039/c1cc10727e. PubMed DOI

Machacek M., Demuth J., Cermak P., Vavreckova M., Hruba L., Jedlickova A., Kubat P., Simunek T., Novakova V., Zimcik P. Tetra(3,4-pyrido)porphyrazines Caught in the Cationic Cage: Toward Nanomolar Active Photosensitizers. J. Med. Chem. 2016;59:9443–9456. doi: 10.1021/acs.jmedchem.6b01140. PubMed DOI

Tabero A., García-Garrido F., Prieto-Castañeda A., Palao E., Agarrabeitia A.R., García-Moreno I., Villanueva A., de la Moya S., Ortiz M.J. BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis. Chem. Commun. 2020;56:940–943. doi: 10.1039/C9CC09397D. PubMed DOI

Li G., Li J., Otsuka Y., Zhang S., Takahashi M., Yamada K. A BODIPY-Based Fluorogenic Probe for Specific Imaging of Lipid Droplets. Materials. 2020;13:677. doi: 10.3390/ma13030677. PubMed DOI PMC

Novakova V., Miletin M., Filandrová T., Lenčo J., Růžička A., Zimcik P. Role of Steric Hindrance in the Newman-Kwart Rearrangement and in the Synthesis and Photophysical Properties of Arylsulfanyl Tetrapyrazinoporphyrazines. J. Org. Chem. 2014;79:2082–2093. doi: 10.1021/jo402791c. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...