Chromenol Derivatives as Novel Antifungal Agents: Synthesis, In Silico and In Vitro Evaluation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
451-03-68/2020-14/200007
Ministry of Education, Science and Technological Development, Republic of Serbia
20.80009.5007.17
Moldovan State Program project
20.80009.8007.14
Moldovan State Program
20.80009.5007.15
National Agency for Research and Development Republic Moldova (ANCD ) project
CZ.02.1.01/0.0/0.0/16_019/0000841
EFSA-CDN project
PubMed
34299579
PubMed Central
PMC8307147
DOI
10.3390/molecules26144304
PII: molecules26144304
Knihovny.cz E-zdroje
- Klíčová slova
- C. albicans CYP51, PASS, antifungal activity, chromenol, molecular docking, vinyl-1,2,4-triazole,
- MeSH
- antifungální látky * chemická syntéza chemie farmakologie MeSH
- chromony * chemická syntéza chemie farmakologie MeSH
- Hypocreales růst a vývoj MeSH
- mitosporické houby růst a vývoj MeSH
- preklinické hodnocení léčiv MeSH
- simulace molekulového dockingu * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antifungální látky * MeSH
- chromony * MeSH
Herein we report the synthesis of some new 1H-1,2,4-triazole functionalized chromenols (3a-3n) via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic aldehydes and the evaluation of their antifungal activity. In silico prediction of biological activity with computer program PASS indicate that the compounds have a high novelty compared to the known antifungal agents. We did not find any close analog among the over 580,000 pharmaceutical agents in the Cortellis Drug Discovery Intelligence database at the similarity cutoff of 70%. The evaluation of antifungal activity in vitro revealed that the highest activity was exhibited by compound 3k, followed by 3n. Their MIC values for different fungi were 22.1-184.2 and 71.3-199.8 µM, respectively. Twelve from fourteen tested compounds were more active than the reference drugs ketoconazole and bifonazole. The most sensitive fungus appeared to be Trichoderma viride, while Aspergillus fumigatus was the most resistant one. It was found that the presence of the 2-(tert-butyl)-2H-chromen-2-ol substituent on the 4th position of the triazole ring is very beneficial for antifungal activity. Molecular docking studies on C. albicans sterol 14α-demethylase (CYP51) and DNA topoisomerase IV were used to predict the mechanism of antifungal activities. According to the docking results, the inhibition of CYP51 is a putative mechanism of antifungal activity of the novel chromenol derivatives. We also showed that most active compounds have a low cytotoxicity, which allows us to consider them promising antifungal agents for the subsequent testing activity in in vivo assays.
Zobrazit více v PubMed
Maertens J. History of the development of azole derivatives. Clin. Microbiol. Infect. 2004;10:1–10. doi: 10.1111/j.1470-9465.2004.00841.x. PubMed DOI
Mast N., Zheng W., Stout C.D., Pikuleva I. Antifungal Azoles: Structural Insights into Undesired Tight Binding to Cholesterol-Metabolizing CYP46A1. Mol. Pharmacol. 2013;84:86–94. doi: 10.1124/mol.113.085902. PubMed DOI PMC
Zavrel M., Esquivel B.D., White T.C. Handbook of Antimicrobial Resistance. Springer; Berlin/Heidelberg, Germany: 2017. The Ins and Outs of Azole Antifungal Drug Resistance: Molecular Mechanisms of Transport; pp. 423–452.
Smith E.B., Henry J.C. Ketoconazole: An Orally Effective Antifungal Agent Mechanism of Action, Pharmacology, Clinical Efficacy and Adverse Effects. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1984;4:199–203. doi: 10.1002/j.1875-9114.1984.tb03356.x. PubMed DOI
Korting H.C., Schöllmann C. The significance of itraconazole for treatment of fungal infections of skin, nails and mucous membranes. J. Dtsch. Dermatol. Ges. 2009;7:11–19. doi: 10.1111/j.1610-0387.2008.06751.x. PubMed DOI
Lackner T.E., Clissold S.P. Bifonazole. Drugs. 1989;38:204–225. doi: 10.2165/00003495-198938020-00004. PubMed DOI
Cuenca-Estrella M., Gomez-Lopez A., Mellado E., Garcia-Effron G., Rodriguez-Tudela J.L. In Vitro Activities of Ravuconazole and Four Other Antifungal Agents against Fluconazole-Resistant or -Susceptible Clinical Yeast Isolates. Antimicrob. Agents Chemother. 2004;48:3107–3111. doi: 10.1128/AAC.48.8.3107-3111.2004. PubMed DOI PMC
Johnson L.B., Kauffman C.A. Voriconazole: A New Triazole Antifungal Agent. Clin. Infect. Dis. 2003;36:630–637. doi: 10.1086/367933. PubMed DOI
Greer N.D. Baylor University Medical Center Proceedings. Volume 16. Informa UK Limited; London, UK: 2003. Voriconazole: The Newest Triazole Antifungal Agent; pp. 241–248. PubMed PMC
Brown G.D., Denning D.W., Gow N.A.R., Levitz S.M., Netea M.G., White T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012;4:165rv13. doi: 10.1126/scitranslmed.3004404. PubMed DOI
Chen A., Sobel J.D. Emerging azole antifungals. Expert Opin. Emerg. Drugs. 2005;10:21–33. doi: 10.1517/14728214.10.1.21. PubMed DOI
Cowen L., Sanglard D., Howard S.J., Rogers P.D., Perlin D.S. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2015;5:a019752. doi: 10.1101/cshperspect.a019752. PubMed DOI PMC
Marichal P., Bossche H.V. Mechanisms of resistance to azole antifungals. Acta Biochim. Pol. 1995;42:509–516. doi: 10.18388/abp.1995_4904. PubMed DOI
Yu S., Chai X., Wang Y., Cao Y., Zhang J., Wu Q., Zhang D., Jiang Y., Yan T., Sun Q. Triazole derivatives with improved in vitro antifungal activity over azole drugs. Drug Des. Devel. Ther. 2014;8:383–390. doi: 10.2147/DDDT.S58680. PubMed DOI PMC
Cao X., Sun Z., Cao Y., Wang R., Cai T., Chu W., Hu W., Yang Y. Design, Synthesis, and Structure–Activity Relationship Studies of Novel Fused Heterocycles-Linked Triazoles with Good Activity and Water Solubility. J. Med. Chem. 2014;57:3687–3706. doi: 10.1021/jm4016284. PubMed DOI
Gupta D., Jain D.K. Synthesis, antifungal and antibacterial activity of novel 1,2,4-triazole derivatives. J. Adv. Pharm. Technol. Res. 2015;6:141–146. doi: 10.4103/2231-4040.161515. PubMed DOI PMC
Wu W., Jiang Y., Fei Q., Du H., Yang M. Synthesis and antifungal activity of novel 1,2,4-triazole derivatives containing an amide moiety. J. Heterocycl. Chem. 2019;57:1379–1386. doi: 10.1002/jhet.3874. DOI
Sadeghpour H., Khabnadideh S., Zomorodian K., Pakshir K., Hoseinpour K., Javid N., Faghih-Mirzaei E., Rezaei Z. Design, Synthesis, and Biological Activity of New Triazole and Nitro-Triazole Derivatives as Antifungal Agents. Molecules. 2017;22:1150. doi: 10.3390/molecules22071150. PubMed DOI PMC
Jin R., Liu J., Zhang G., Li J., Zhang S., Guo H. Design, Synthesis, and Antifungal Activities of Novel 1,2,4-Triazole Schiff Base Derivatives. Chem. Biodivers. 2018;15:e1800263. doi: 10.1002/cbdv.201800263. PubMed DOI
Gao F., Wang T., Xiao J., Huang G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem. 2019;173:274–281. doi: 10.1016/j.ejmech.2019.04.043. PubMed DOI
Yang L., Bao X.-P. Synthesis of novel 1,2,4-triazole derivatives containing the quinazolinylpiperidinyl moiety and N-(substituted phenyl)acetamide group as efficient bactericides against the phytopathogenic bacterium Xanthomonas oryzae pv. oryzae. RSC Adv. 2017;7:34005–34011. doi: 10.1039/C7RA04819J. DOI
Du H., Fan Z., Yang L., Bao X. Synthesis of novel quinazolin-4(3H)-one derivatives containing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety as effective agricultural bactericides against the pathogen Xanthomonas oryzae pv. oryzae. Mol. Divers. 2017;22:1–10. doi: 10.1007/s11030-017-9782-3. PubMed DOI
Thakur A., Gupta P.S., Shukla P.K., Verma A., Pathak P. 1, 2, 4-Triazole Scafolds: Recent Advances and Pharmacological Applications. Int. J. Curr. Res. Acad. Rev. 2016;4:277–296. doi: 10.20546/ijcrar.2016.402.031. DOI
Singh R., Kashaw S.K., Mishra V.K., Mishra M., Rajoriya V., Kashaw V. Design and Synthesis of New Bioactive 1,2,4-Triazoles, Potential Antitubercular and Antimicrobial Agents. Indian J. Pharm. Sci. 2018;80:36–45. doi: 10.4172/pharmaceutical-sciences.1000328. DOI
Papadopoulou M.V., Bloomer W.D., Rosenzweig H.S., Chatelain E., Kaiser M., Wilkinson S.R., McKenzie C., Ioset J.-R. Novel 3-Nitro-1H-1,2,4-triazole-Based Amides and Sulfonamides as Potential Antitrypanosomal Agents. J. Med. Chem. 2012;55:5554–5565. doi: 10.1021/jm300508n. PubMed DOI PMC
Papadopoulou M.V., Bloomer W.D., Lepesheva G.I., Rosenzweig H.S., Kaiser M., Aguilera-Venegas B., Wilkinson S.R., Chatelain E., Ioset J.-R. Novel 3-Nitrotriazole-Based Amides and Carbinols as Bifunctional Antichagasic Agents. J. Med. Chem. 2015;58:1307–1319. doi: 10.1021/jm5015742. PubMed DOI PMC
Chu X.-M., Wang C., Wang W.-L., Liang L., Liu W., Gong K.-K., Sun K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem. 2019;166:206–223. doi: 10.1016/j.ejmech.2019.01.047. PubMed DOI
Li Z., Cao Y., Zhan P., Pannecouque C., Balzarini J., De Clercq E., Liu X. Synthesis and Anti-HIV Evaluation of Novel 1,2,4-triazole Derivatives as Potential Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. Lett. Drug Des. Discov. 2012;10:27–34. doi: 10.2174/1570180811309010027. DOI
Wu G., Gao Y., Kang D., Huang B., Huo Z., Liu H., Poongavanam V., Zhan P., Liu X. Design, synthesis and biological evaluation of tacrine-1,2,3-triazole derivatives as potent cholinesterase inhibitors. MedChemComm. 2017;9:149–159. doi: 10.1039/C7MD00457E. PubMed DOI PMC
Li Y., Pasunooti K.K., Li R.-J., Liu W., Head S.A., Shi W.Q., Liu J.O. Novel Tetrazole-Containing Analogues of Itraconazole as Potent Antiangiogenic Agents with Reduced Cytochrome P450 3A4 Inhibition. J. Med. Chem. 2018;61:11158–11168. doi: 10.1021/acs.jmedchem.8b01252. PubMed DOI
El-Sherief H.A., Youssif B.G., Bukhari S.N.A., Abdel-Aziz M., Abdel-Rahman H. Novel 1,2,4-triazole derivatives as potential anticancer agents: Design, synthesis, molecular docking and mechanistic studies. Bioorg. Chem. 2018;76:314–325. doi: 10.1016/j.bioorg.2017.12.013. PubMed DOI
Mahanti S., Sunkara S., Bhavani R. Synthesis, biological evaluation and computational studies of fused acridine containing 1,2,4-triazole derivatives as anticancer agents. Synth. Commun. 2019;49:1729–1740. doi: 10.1080/00397911.2019.1608450. DOI
Mohamed M.A.A., Allah O.A.A., Bekhit A.A., Kadry A.M., El-Saghier A.M.M. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J. Heterocycl. Chem. 2020;57:2365–2378. doi: 10.1002/jhet.3951. DOI
Ye G.-J., Lan T., Huang Z.-X., Cheng X.-N., Cai C.-Y., Ding S.-M., Xie M.-L., Wang B. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion. Eur. J. Med. Chem. 2019;177:362–373. doi: 10.1016/j.ejmech.2019.05.045. PubMed DOI
Sari S., Kaynak F.B., Dalkara S. Synthesis and anticonvulsant screening of 1,2,4-triazole derivatives. Pharmacol. Rep. 2018;70:1116–1123. doi: 10.1016/j.pharep.2018.06.007. PubMed DOI
Xia Y., Chen C., Liu Y., Ge G., Dou T., Wang P. Synthesis and Structure-Activity Relationship of Daphnetin Derivatives as Potent Antioxidant Agents. Molecules. 2018;23:2476. doi: 10.3390/molecules23102476. PubMed DOI PMC
Mashhadinezhad M., Mamaghani M., Rassa M., Shirini F. A Facile Green Synthesis of Chromene Derivatives as Antioxidant and Antibacterial Agents through a Modified Natural Soil. Chem. 2019;4:4920–4932. doi: 10.1002/slct.201900405. DOI
Gandhi D., Agarwal D.K., Kalal P., Bhargava A., Jangid D., Agarwal S. Synthesis, characterization and evaluation of novel benzothiazole clubbed chromene derivatives for their anti-inflammatory potential. Phosphorus Sulfur Silicon Relat. Elem. 2018;193:840–847. doi: 10.1080/10426507.2018.1514502. DOI
Chougala B.M., Samundeeswari S., Holiyachi M., Naik N.S., Shastri L.A., Dodamani S., Jalalpure S., Dixit S.R., Joshi S.D., Sunagar V.A. Green, unexpected synthesis of bis-coumarin derivatives as potent anti-bacterial and anti-inflammatory agents. Eur. J. Med. Chem. 2018;143:1744–1756. doi: 10.1016/j.ejmech.2017.10.072. PubMed DOI
Youssef M.S.K., Abeed A.A.O., El-Emary T.I. Synthesis and evaluation of chromene-based compounds containing pyrazole moiety as antimicrobial agents. Heterocycl. Commun. 2017;23:55–64. doi: 10.1515/hc-2016-0136. DOI
Khan M.S., Agrawal R., Ubaidullah M., Hassan I., Tarannum N., Ubaidullah M. Design, synthesis and validation of anti-microbial coumarin derivatives: An efficient green approach. Heliyon. 2019;5:e02615. doi: 10.1016/j.heliyon.2019.e02615. PubMed DOI PMC
Bhagat K., Bhagat J., Gupta M.K., Singh J.V., Gulati H.K., Singh A., Kaur K., Kaur G., Sharma S., Rana A., et al. Design, Synthesis, Antimicrobial Evaluation, and Molecular Modeling Studies of Novel Indolinedione–Coumarin Molecular Hybrids. ACS Omega. 2019;4:8720–8730. doi: 10.1021/acsomega.8b02481. PubMed DOI PMC
Prusty J.S., Kumar A. Coumarins: Antifungal effectiveness and future therapeutic scope. Mol. Divers. 2020;24:1367–1383. doi: 10.1007/s11030-019-09992-x. PubMed DOI
Fouad S.A., Hessein S.A., Abbas S.Y., Farrag A., Ammar Y.A. Synthesis of Chromen-2-one, Pyrano[3,4-c]chromene and Pyridino[3,4-c]chromene Derivatives as Potent Antimicrobial Agents. Croat. Chem. Acta. 2018;91:99–107. doi: 10.5562/cca3266. DOI
Kushwaha K., Kaushik N., Lata, Jain S.C. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials. Bioorg. Med. Chem. Lett. 2014;24:1795–1801. doi: 10.1016/j.bmcl.2014.02.027. PubMed DOI
Al-Masoudi N.A., Mohammed H.H., Hamdy A.M., Akrawi O.A., Eleya N., Spannenberg A., Pannecouque C., Langer P. Synthesis and anti-HIV Activity of New Fused Chromene Derivatives Derived from 2-Amino-4-(1-naphthyl)-5-oxo-4H,5H-pyrano[3,2- c]chromene-3-carbonitrile. Z. Für Nat. B. 2013;68:229–238. doi: 10.5560/znb.2013-2297. DOI
Jesumoroti O.J., Faridoon F., Mnkandhla D., Isaacs M., Hoppe H.C., Klein R. Evaluation of novel N′-(3-hydroxybenzoyl)-2-oxo-2H-chromene-3-carbohydrazide derivatives as potential HIV-1 integrase inhibitors. MedChemComm. 2019;10:80–88. doi: 10.1039/C8MD00328A. PubMed DOI PMC
Datar P., Auti P.B. Design and synthesis of novel 4-substituted 1,4-dihydropyridine derivatives as hypotensive agents. J. Saudi Chem. Soc. 2016;20:510–516. doi: 10.1016/j.jscs.2012.08.003. DOI
Venkateswararao E., Kim M.-S., Sharma V.K., Lee K.-C., Subramanian S., Roh E., Kim Y., Jung S.-H. Identification of novel chromenone derivatives as interleukin-5 inhibitors. Eur. J. Med. Chem. 2013;59:31–38. doi: 10.1016/j.ejmech.2012.11.007. PubMed DOI
Shaveta, Mishra S., Singh P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem. 2016;124:500–536. doi: 10.1016/j.ejmech.2016.08.039. PubMed DOI
Bérubé G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov. 2016;11:281–305. doi: 10.1517/17460441.2016.1135125. PubMed DOI
Lödige M., Hiersch L. Design and Synthesis of Novel Hybrid Molecules against Malaria. Int. J. Med. Chem. 2015;2015:458319. doi: 10.1155/2015/458319. PubMed DOI PMC
Defant A., Vozza A., Mancini I. Design, Synthesis and Antimicrobial Evaluation of New Norfloxacin-Naphthoquinone Hybrid Molecules. Proceedings. 2019;41:9. doi: 10.3390/ecsoc-23-06480. DOI
Stingaci E., Zveaghinteva M., Pogrebnoi S., Lupascu L., Valica V., Uncu L., Smetanscaia A., Drumea M., Petrou A., Ciric A., et al. New vinyl-1,2,4-triazole derivatives as antimicrobial agents: Synthesis, biological evaluation and molecular docking studies. Bioorganic Med. Chem. Lett. 2020;30:127368. doi: 10.1016/j.bmcl.2020.127368. PubMed DOI
Shi Y.-L., Shi M. The synthesis of chromenes, chromanes, coumarins and related heterocycles via tandem reactions of salicylic aldehydes or salicylic imines with α,β-unsaturated compounds. Org. Biomol. Chem. 2007;5:1499–1504. doi: 10.1039/B618984A. PubMed DOI
Filimonov D., Lagunin A.A., Gloriozova T.A., Rudik A., Druzhilovskii D.S., Pogodin P.V., Poroikov V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014;50:444–457. doi: 10.1007/s10593-014-1496-1. DOI
Poroikov V.V. Computer-Aided Drug Design: From Discovery of Novel Pharmaceutical Agents to Systems Pharmacology. Biochem. Suppl. Ser. B Biomed. Chem. 2020;14:216–227. doi: 10.18097/pbmc20206601030. PubMed DOI
Cortellis Drug Discovery Intelligence Database. [(accessed on 7 July 2021)]; Available online: https://www.cortellis.com/drugdiscovery/
Martin Y.C., Kofron A.J.L., Traphagen L.M. Do Structurally Similar Molecules Have Similar Biological Activity? J. Med. Chem. 2002;45:4350–4358. doi: 10.1021/jm020155c. PubMed DOI
Sheldrick G.M. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Amiranashvili L., Nadaraia N., Merlani M., Kamoutsis C., Petrou A., Geronikaki A., Pogodin P., Druzhilovskiy D., Poroikov V., Ciric A., et al. Antimicrobial Activity of Nitrogen-Containing 5-α-Androstane Derivatives: In Silico and Experimental Studies. Antibiotics. 2020;9:224. doi: 10.3390/antibiotics9050224. PubMed DOI PMC
Trott O., Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Wolber G., Langer T. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2004;45:160–169. doi: 10.1021/ci049885e. PubMed DOI
Egan W.J., Merz K.M., Baldwin J.J. Prediction of Drug Absorption Using Multivariate Statistics. J. Med. Chem. 2000;43:3867–3877. doi: 10.1021/jm000292e. PubMed DOI
Ghose A.K., Viswanadhan V.N., Wendoloski J.J. A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999;1:55–68. doi: 10.1021/cc9800071. PubMed DOI
Muegge I., Heald S.L., Brittelli D. Simple Selection Criteria for Drug-like Chemical Matter. J. Med. Chem. 2001;44:1841–1846. doi: 10.1021/jm015507e. PubMed DOI
Veber D.F., Johnson S.R., Cheng H.-Y., Smith B.R., Ward K.W., Kopple K.D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002;45:2615–2623. doi: 10.1021/jm020017n. PubMed DOI
Benet L.Z., Hosey C.M., Ursu O., Oprea T.I. BDDCS, the Rule of 5 and drugability. Adv. Drug Deliv. Rev. 2016;101:89–98. doi: 10.1016/j.addr.2016.05.007. PubMed DOI PMC
Mladěnka P., Karlíčková J., Hrubša M., Veljović E., Muratović S., Carazo A., Mali A.S., Špirtović-Halilović S., Saso L., Pour M., et al. Interaction of 2,6,7-Trihydroxy-Xanthene-3-Ones with Iron and Copper, and Biological Effect of the Most Active Derivative on Breast Cancer Cells and Erythrocytes. Appl. Sci. 2020;10:4846. doi: 10.3390/app10144846. DOI